论文部分内容阅读
针对非线性系统的控制问题,本文将神经网络辨识、混沌优化和预测控制思想有机结合,提出了一种新型非线性预测控制器.该控制器以神经网络作为预测模型,混沌优化算法作为滚动优化策略,避免了非线性预测控制中复杂的梯度计算和矩阵求逆问题.另外在训练神经网络过程中,采用了带混沌机制的自适应学习率的BP算法,以提高神经网络的收敛能力和收敛速度.仿真研究说明了该非线性预测控制器的有效性及实时性.