论文部分内容阅读
[摘 要]本文简单分析了信号接收机音频放大电路的设计方案及应用电路。对接收机的抗干扰性及音频功放的低噪声设计进行了深入分析,提出了抑制和消除噪声的具体措施。
[关键词]音频 放大电路 抗干扰
中图分类号:P101 文献标识码:A 文章编号:1009-914X(2015)40-0002-01
1、概述
信号接收机一种从天线接收并解调无线电信号的电子设备,并制成声音信号反馈给使用者,而这种声音信号接收初期比较微弱,幅值和功率都无法满足输出要求,需要利用音频放大器有效放大音频信号,满足音频信号的输出。任何噪声的加入都可能导致音频信号的无效输出,所以信号接收机的抗干扰性能是系统可靠性的重要指标。在电子设备中,一个电路所受干扰的程度可用下式描述:
S=WC/I
其中,S为电子线路受干扰的程度,为干扰发生的强度,C为干扰通过某种途径到达干扰处的耦合因素,,为受干扰电路的抗干扰性能Ⅲ。笔者将从减少干扰源产生的干扰强度、切断和降低干扰耦合因素和采取各种措施提高电路的抗干扰能力等多方面出发来提高接收机的抗干扰性。
2、音频放大器的设计
音频放大器由前置放大器和功率放大器组成回,原理框图如图1所示。
2.1 前置放大器
信号源前置放大器的作用为:(1)有选择地吸收信号源的信号;(2)对输入信号进行频率均衡或阻抗变换;(3)对信号进行相应的放大,使之能满足功率放大器对输入信号的电平要求,并改善其信噪比。由于LM324运放电路具有电源电压范围宽、静态功耗小、价格低廉等优点,该设计用此放大器代替晶体管进行交流放大,用作功率放大器的前置放大。
2.2 功率放大器
通常在设计音频功率放大器时,需要了解以下6点:(1)所需的输出功率;(2)输入阻抗;(3)输入信号电平;(4)最大电源电压;(5)负载电阻;(6)带宽翻。在笔者的设计中,要求输出功率为16W,输入阻抗≥lO0kQ,输入信号电平5V(最大),负载电阻4Q,带宽20-800Hz(±0.25dB)。笔者选用TDA2030A集成块来设计音频
功率放大器,其输出功率最大可达l8W,电源电压为6-18V,也可单电源供电,输出电流大(最大3.5A),谐波失真和交越失真小(+14V/4n,THD=0.5%),电气性能稳定、可靠、适应长时间连续工作且芯片内部具有过载保护和热切断保护电路。
3、抗干扰性分析和低噪声研究
仪器干扰分2种:(1)外部干扰是指那些与系统结构无关而是由于使用条件和外部环境因素所决定的干扰;(2)内部干扰是指由于系统结构、元件布局和生产工艺等所决定的干扰。内部干扰主要有散杂电感和电容的结合引起的不同信号感应、长线传输造成电磁波的反射、多点接地造成的电位差干扰等[51。抑制和消除干扰的方法主要是明确干扰源、切断耦合途径和降低装置本身对干扰的敏感度。在电路设计和印制板制作过程中所采取的主要抗干扰措施如下。
3.1 硬件设计抗干扰技术
(1)电源的抗干扰措施
来自电源的干扰主要从电源和电源引线侵入系统,当系统与其他经常变动的大负载共用电源时,会产生电源噪声,如电源过压、欠压、浪涌、下陷等尖峰干扰。首先,笔者采用开关稳压电源供电,提高了供电质量;其次,在音频功率放大电路部分设计独立的电源插座,这部分的供电线不经过PCB板,直接用屏蔽线与直流稳压电源相连,避免数字电路中高频成分的串扰;再次,在电源输出端采用大电容并接小电容的方法进一步滤除电源本身的谐波成分,提高供电的稳定性。
(2)地线的处理
数字地线通常有很大的噪声且有很大的电流尖峰,在笔者设计中所有的模拟地线和数字地线分开走线,且音频功放电路部分的地独立于其他模拟地单独布线,最后三种地并联单点接地。
(3)设计硬件滤波器消除高频干扰
由于脑波音乐属于低频信号,为防止高频噪声被功率放大器进一步放大,在功率放大器的输入端设计了一阶低通滤波电路,其上限截止频率
3.2 印制电路板抗干扰技术
(1)地线和电源线的处理
地线和电源线加粗,对用电量较大的主电源走线和主地线特别加粗,以防止细线阻抗使电源和接地电位随负载电流变化而导致噪声增加。电源线和地线基本上分布于印制板的两面,并对部分地线进行覆铜处理,这样可减小接地电阻、减少电流环路面积、降低接地电位差并有利于散热。
(2)器件布置
在制作印制板时,器件布局主要考虑以下3点:①元器件的布局遵循主信号线短且直的要求;②信号输入和输出分别位于功放的两侧,以防止相互干扰;③左右两路放大器的元件对称安放,这样不但有利于两路信号无差别传输,而且使电路板更加美观。
(3)对音频功率放大电路加屏蔽
对整个系统来说,音频功率放大器本身为一强干扰源,笔者在音频功放周围加上屏蔽体(地线圈)且将屏蔽体一点接地,可把电场形成的干扰弧屏蔽掉,使之对邻近导线或回路不产生干扰且可抑制磁场对弱信号回路可能造成的干扰。信号通过小电阻跨接进出屏蔽体,防止信号线与屏蔽体正交处产生的分布电容影响信号的完整性。
4、实验结果
该设计应用于接收机的原理样机中。实验表明,该音频放大器可有效放大接收机的音频信号,其抗干扰设计提高了系统的可靠性并有效抑制了噪声干扰,输出基本满足设计要求
计算电源电压功率放大器的本质为将电源电能“转化”为音频信号的电能。所以最大电源电压的确定就显得相当重要,一般来说,输出功率和负载阻抗决定了对电源电压有一定的要求。因此,在有效抑制抗干扰的时候可以从以下几方面着手:
(1)在峰值输出的幅度。加一个压降(约5V),得到电源电压的基本值;(2)电源的调整率取决于无负载时的电压,通常要高于15%左右;(3)考虑电网电压的波动,按10%计算,因此,最大电源电压。
(2)由于电阻有分压作用,放大器增益提高,可提供更大的输出功率和动态范围,但随着增益的提高,噪声也相应放大,结果降低了信噪比,也影响了功率带宽。
(3)TDA2030A是一个大功率放大器,为了使器件在正常工作时不发生热关断,提高器件的长期可靠性和系统的稳定性,设计采用铝合金散热片为其散热。
5、结语
本文针抗干扰性能进行了理论计算与仿真分析。通过改变放大器的电压以及增加相关器件,进一步提高了放大电路抗干扰性能,从而实现了音频放大电路的有效信号源。
参考文献
[1]倪其育.音频技术教程[M].北京:国防工业出版社,2011.
[2]李洹.LM3875rIIM3876T高性能40W单片音频功率放大器[J].电声技术,2011(3):50—53.
[3]赵永红.简易音频集成功率放大器[J].电子制作,2010(11):17—18.
[关键词]音频 放大电路 抗干扰
中图分类号:P101 文献标识码:A 文章编号:1009-914X(2015)40-0002-01
1、概述
信号接收机一种从天线接收并解调无线电信号的电子设备,并制成声音信号反馈给使用者,而这种声音信号接收初期比较微弱,幅值和功率都无法满足输出要求,需要利用音频放大器有效放大音频信号,满足音频信号的输出。任何噪声的加入都可能导致音频信号的无效输出,所以信号接收机的抗干扰性能是系统可靠性的重要指标。在电子设备中,一个电路所受干扰的程度可用下式描述:
S=WC/I
其中,S为电子线路受干扰的程度,为干扰发生的强度,C为干扰通过某种途径到达干扰处的耦合因素,,为受干扰电路的抗干扰性能Ⅲ。笔者将从减少干扰源产生的干扰强度、切断和降低干扰耦合因素和采取各种措施提高电路的抗干扰能力等多方面出发来提高接收机的抗干扰性。
2、音频放大器的设计
音频放大器由前置放大器和功率放大器组成回,原理框图如图1所示。
2.1 前置放大器
信号源前置放大器的作用为:(1)有选择地吸收信号源的信号;(2)对输入信号进行频率均衡或阻抗变换;(3)对信号进行相应的放大,使之能满足功率放大器对输入信号的电平要求,并改善其信噪比。由于LM324运放电路具有电源电压范围宽、静态功耗小、价格低廉等优点,该设计用此放大器代替晶体管进行交流放大,用作功率放大器的前置放大。
2.2 功率放大器
通常在设计音频功率放大器时,需要了解以下6点:(1)所需的输出功率;(2)输入阻抗;(3)输入信号电平;(4)最大电源电压;(5)负载电阻;(6)带宽翻。在笔者的设计中,要求输出功率为16W,输入阻抗≥lO0kQ,输入信号电平5V(最大),负载电阻4Q,带宽20-800Hz(±0.25dB)。笔者选用TDA2030A集成块来设计音频
功率放大器,其输出功率最大可达l8W,电源电压为6-18V,也可单电源供电,输出电流大(最大3.5A),谐波失真和交越失真小(+14V/4n,THD=0.5%),电气性能稳定、可靠、适应长时间连续工作且芯片内部具有过载保护和热切断保护电路。
3、抗干扰性分析和低噪声研究
仪器干扰分2种:(1)外部干扰是指那些与系统结构无关而是由于使用条件和外部环境因素所决定的干扰;(2)内部干扰是指由于系统结构、元件布局和生产工艺等所决定的干扰。内部干扰主要有散杂电感和电容的结合引起的不同信号感应、长线传输造成电磁波的反射、多点接地造成的电位差干扰等[51。抑制和消除干扰的方法主要是明确干扰源、切断耦合途径和降低装置本身对干扰的敏感度。在电路设计和印制板制作过程中所采取的主要抗干扰措施如下。
3.1 硬件设计抗干扰技术
(1)电源的抗干扰措施
来自电源的干扰主要从电源和电源引线侵入系统,当系统与其他经常变动的大负载共用电源时,会产生电源噪声,如电源过压、欠压、浪涌、下陷等尖峰干扰。首先,笔者采用开关稳压电源供电,提高了供电质量;其次,在音频功率放大电路部分设计独立的电源插座,这部分的供电线不经过PCB板,直接用屏蔽线与直流稳压电源相连,避免数字电路中高频成分的串扰;再次,在电源输出端采用大电容并接小电容的方法进一步滤除电源本身的谐波成分,提高供电的稳定性。
(2)地线的处理
数字地线通常有很大的噪声且有很大的电流尖峰,在笔者设计中所有的模拟地线和数字地线分开走线,且音频功放电路部分的地独立于其他模拟地单独布线,最后三种地并联单点接地。
(3)设计硬件滤波器消除高频干扰
由于脑波音乐属于低频信号,为防止高频噪声被功率放大器进一步放大,在功率放大器的输入端设计了一阶低通滤波电路,其上限截止频率
3.2 印制电路板抗干扰技术
(1)地线和电源线的处理
地线和电源线加粗,对用电量较大的主电源走线和主地线特别加粗,以防止细线阻抗使电源和接地电位随负载电流变化而导致噪声增加。电源线和地线基本上分布于印制板的两面,并对部分地线进行覆铜处理,这样可减小接地电阻、减少电流环路面积、降低接地电位差并有利于散热。
(2)器件布置
在制作印制板时,器件布局主要考虑以下3点:①元器件的布局遵循主信号线短且直的要求;②信号输入和输出分别位于功放的两侧,以防止相互干扰;③左右两路放大器的元件对称安放,这样不但有利于两路信号无差别传输,而且使电路板更加美观。
(3)对音频功率放大电路加屏蔽
对整个系统来说,音频功率放大器本身为一强干扰源,笔者在音频功放周围加上屏蔽体(地线圈)且将屏蔽体一点接地,可把电场形成的干扰弧屏蔽掉,使之对邻近导线或回路不产生干扰且可抑制磁场对弱信号回路可能造成的干扰。信号通过小电阻跨接进出屏蔽体,防止信号线与屏蔽体正交处产生的分布电容影响信号的完整性。
4、实验结果
该设计应用于接收机的原理样机中。实验表明,该音频放大器可有效放大接收机的音频信号,其抗干扰设计提高了系统的可靠性并有效抑制了噪声干扰,输出基本满足设计要求
计算电源电压功率放大器的本质为将电源电能“转化”为音频信号的电能。所以最大电源电压的确定就显得相当重要,一般来说,输出功率和负载阻抗决定了对电源电压有一定的要求。因此,在有效抑制抗干扰的时候可以从以下几方面着手:
(1)在峰值输出的幅度。加一个压降(约5V),得到电源电压的基本值;(2)电源的调整率取决于无负载时的电压,通常要高于15%左右;(3)考虑电网电压的波动,按10%计算,因此,最大电源电压。
(2)由于电阻有分压作用,放大器增益提高,可提供更大的输出功率和动态范围,但随着增益的提高,噪声也相应放大,结果降低了信噪比,也影响了功率带宽。
(3)TDA2030A是一个大功率放大器,为了使器件在正常工作时不发生热关断,提高器件的长期可靠性和系统的稳定性,设计采用铝合金散热片为其散热。
5、结语
本文针抗干扰性能进行了理论计算与仿真分析。通过改变放大器的电压以及增加相关器件,进一步提高了放大电路抗干扰性能,从而实现了音频放大电路的有效信号源。
参考文献
[1]倪其育.音频技术教程[M].北京:国防工业出版社,2011.
[2]李洹.LM3875rIIM3876T高性能40W单片音频功率放大器[J].电声技术,2011(3):50—53.
[3]赵永红.简易音频集成功率放大器[J].电子制作,2010(11):17—18.