论文部分内容阅读
摘 要:为了能更加有效甄别S9型配电变压器与S11型配电变压器,同时判断新入网配电变压器的空载损耗是否符合相关标准。现对三相调压器进行了改造,将原来的三相同轴调压改成分相调压,通过每相调压杆的微调,获得稳定的三相输出电源,进而测量出准确的变压器空载损耗值,实现了对变压器空载损耗的精确测量,为节能把好关。
关键词:变压器;空载损耗;调压器;改造
中图分类号:TM7 文献标识码:A 文章编号:1009-0118(2010)-12-0103-02
在全球提倡节能减排的时刻,电力行业也不甘人后,目前正对老旧的S9型配电变压器进行更换,换成空载损耗更小的S11型和SBH15型新型配电变压器。而S11型和SBH15型与S9型的主要区别就在于空载损耗大大降低了,为此,有效测量空载损耗就能区别同容量的不同型号的变压器,防止部分不法厂商以次充好,危害电网运行。因变压器正常工作时其内部磁通密度已达到磁饱和曲线的拐点附近,因此变压器的空载损耗具有非线性,而且越是接近额定电压,非线性越大,故在测试时取得稳定的额定电压变得尤为重要。
一、变压器空载损耗测试的理论分析
(一)变压器的工作原理及空载损耗产生的原因
变压器是借助于电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。变压器的基本原理是电磁感应原理,变压器在空载时,吸收系统的无功能量形成空载电流,空载电流在铁心内产生磁滞损耗和涡流损耗,这就是变压器空载时主要的空载损耗。
(二)影响变压器空载损耗测量的因素
变压器空载时,由于三相磁路的不对称,B相磁路比A、C相短,其三相激磁电流大小不等,造成三相负荷大小不等,容易改变调压器的输出电压的平衡性,尤其是小容量的调压器影响更大。
试验电源频率的不稳定,试验电压波形的畸变、电压三相不平衡等都将影响变压器空载损耗测量的准确性。当采用较大容量三相调压器时,都能比较好的解决电源频率和试验电压波形畸变的问题,而试验电压三相不平衡则因为三相调压器三相碳刷不能同步、变压器空载时三相负载的不平衡等受到影响。
而变压器铁心在设计时都是将额定电压时的磁通密度设计在磁饱和曲线的拐点附近,这就导致变压器空载时,电压微小偏离额定值都会产生较大的空载电流的变化,从而对变压器的空载损耗的测量带来严重的影响。而且,变压器工作在额定电压附近时,因铁心磁通密度已达饱和曲线的拐点,造成此时变压器电压与电流的非线性,从而无法用换算来得出准确的空载损耗。因此,对变压器进行空载损耗测试时,获得稳定的三相电压显得尤为重要。而这,完全可以通过改造调压器的结构来实现。
二、调压器的改造
(一)目前普通三相调压器的结构及输出电压
目前普通的三相调压器都是同轴控制三相碳刷来实现三相电压的调整,其简化原理图如下:
这种调压器的特点是一动全动,只能对三相电压作粗调,而不能做到精细调节,在其他试验中,这种微小的误差对试验结果的影响不大,而对配电变压器的空载损耗试验时,将造成一定的影响。用这种调压器做三相配电变压器空载试验时的输出电压如下:
表1 调压器接空载变压器后的输出电压
由上表可以看出,三相虽然大致都在400V,但还是有一定的偏差,无法将三相输出电压都调整到400V。
(二)改造调压器可行性分析
三相调压器的原理是,一侧输入电压,另一侧则由三个碳刷在整个线圈上的位置决定输出电压的大小,而在制造过程中,三个碳刷的位置有可能不在一个平面上,也可能由于长期的使用,连接部分出现松动,导致某一相或几相的碳刷出现自由行程,从而产生实际位置的偏差。在这些情况出现时,三相调压器的输出电压就会不平衡。出现这种现象的主要原因就在于三相调压器三相调压为同轴调压,无法做到精细的逐相调压。只要将三相调压器由同轴调压改成异轴调压,就能对每一相的电压做单独的调整,进而实现三相输出平衡。
(三)调压器的改造
对调压器的结构稍作调整即可实现这一目的,只要将三相调压器的主轴分解成单相,可以对每一相的电压进行调节即可。
图2 改造后的三相调压器原理图
经过改造的三相调压器可先进行粗略的升压,待检测仪器显示接近400V时在进行每一相的微调,最终达到三相平衡输出400V的目的,用改造后的调压器做三相配电变压器空载试验时的输出电压如下:
表2 改造后调压器接空载变压器后的输出电压
由上表可以看出:经过对调压器转轴的改变,再加上试验时的反复调整,三相电压输出平衡度明显提高。
三、效果检查
为了进一步检查改造后的三相调压器的实用性,现分别用改造前和改造后的调压器对三台10kV配电变压器的空载损耗测试数据进行比较(其他使用的仪器仪表均一致):
表3 改造前后空载试验数据的比较
由表3可以看出,在使用改造前的三相调压器进行试验时,由于试验时三相调压器的输出电压不稳定、不平衡,只能达到表1的电压水平,在这种电压下测试出来的试验数据与原始出厂数据相比,有的偏大,有的偏小,而且幅度都比较大,一旦误差超过+5%,就会对变压器造成误判(省标规定空载损耗超过+5%为不合格)。利用改造后的三相调压器对10kV配电变压器进行空载损耗测试时,由于能够达到表2的电压水平,三相电压基本可以保持在400V,从而可以测量出比较准确真实的空载损耗值,更加有利于对配电变压器的判断,分析问题的所在。
四、结论
通过以上分析,可以看出,经过对三相调压器的改造,可以比较准确的测量出配电变压器的空载损耗,杜绝部分不法厂家和商人通过非法手段将老旧高损耗的变压器经过改装就以次充好,为电网的安全可靠运行把好关,也为节能减排在用电上得到真正的实施。最后,因时间仓促,本文所列的各个试验数据未将试验接线损耗、表计损耗等因素排除在外,导致试验数据存在一定的误差,若能将这些问题解决,空载损耗的测试将会更加准确。
参考文献:
[1]朱英浩.新编变压器实用技术问答[M].沈阳:辽宁科学技术出版社,2001.
[2]李丹娜.电力变压器应用技术[M].北京:中国电力出版社,2009.
[3]邢道清.变压器检修与电气试验[M].北京:机械工业出版社,2009.
[4]胡启凡.变压器试验技术[M].北京:中国电力出版社,2010.
关键词:变压器;空载损耗;调压器;改造
中图分类号:TM7 文献标识码:A 文章编号:1009-0118(2010)-12-0103-02
在全球提倡节能减排的时刻,电力行业也不甘人后,目前正对老旧的S9型配电变压器进行更换,换成空载损耗更小的S11型和SBH15型新型配电变压器。而S11型和SBH15型与S9型的主要区别就在于空载损耗大大降低了,为此,有效测量空载损耗就能区别同容量的不同型号的变压器,防止部分不法厂商以次充好,危害电网运行。因变压器正常工作时其内部磁通密度已达到磁饱和曲线的拐点附近,因此变压器的空载损耗具有非线性,而且越是接近额定电压,非线性越大,故在测试时取得稳定的额定电压变得尤为重要。
一、变压器空载损耗测试的理论分析
(一)变压器的工作原理及空载损耗产生的原因
变压器是借助于电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。变压器的基本原理是电磁感应原理,变压器在空载时,吸收系统的无功能量形成空载电流,空载电流在铁心内产生磁滞损耗和涡流损耗,这就是变压器空载时主要的空载损耗。
(二)影响变压器空载损耗测量的因素
变压器空载时,由于三相磁路的不对称,B相磁路比A、C相短,其三相激磁电流大小不等,造成三相负荷大小不等,容易改变调压器的输出电压的平衡性,尤其是小容量的调压器影响更大。
试验电源频率的不稳定,试验电压波形的畸变、电压三相不平衡等都将影响变压器空载损耗测量的准确性。当采用较大容量三相调压器时,都能比较好的解决电源频率和试验电压波形畸变的问题,而试验电压三相不平衡则因为三相调压器三相碳刷不能同步、变压器空载时三相负载的不平衡等受到影响。
而变压器铁心在设计时都是将额定电压时的磁通密度设计在磁饱和曲线的拐点附近,这就导致变压器空载时,电压微小偏离额定值都会产生较大的空载电流的变化,从而对变压器的空载损耗的测量带来严重的影响。而且,变压器工作在额定电压附近时,因铁心磁通密度已达饱和曲线的拐点,造成此时变压器电压与电流的非线性,从而无法用换算来得出准确的空载损耗。因此,对变压器进行空载损耗测试时,获得稳定的三相电压显得尤为重要。而这,完全可以通过改造调压器的结构来实现。
二、调压器的改造
(一)目前普通三相调压器的结构及输出电压
目前普通的三相调压器都是同轴控制三相碳刷来实现三相电压的调整,其简化原理图如下:
这种调压器的特点是一动全动,只能对三相电压作粗调,而不能做到精细调节,在其他试验中,这种微小的误差对试验结果的影响不大,而对配电变压器的空载损耗试验时,将造成一定的影响。用这种调压器做三相配电变压器空载试验时的输出电压如下:
表1 调压器接空载变压器后的输出电压
由上表可以看出,三相虽然大致都在400V,但还是有一定的偏差,无法将三相输出电压都调整到400V。
(二)改造调压器可行性分析
三相调压器的原理是,一侧输入电压,另一侧则由三个碳刷在整个线圈上的位置决定输出电压的大小,而在制造过程中,三个碳刷的位置有可能不在一个平面上,也可能由于长期的使用,连接部分出现松动,导致某一相或几相的碳刷出现自由行程,从而产生实际位置的偏差。在这些情况出现时,三相调压器的输出电压就会不平衡。出现这种现象的主要原因就在于三相调压器三相调压为同轴调压,无法做到精细的逐相调压。只要将三相调压器由同轴调压改成异轴调压,就能对每一相的电压做单独的调整,进而实现三相输出平衡。
(三)调压器的改造
对调压器的结构稍作调整即可实现这一目的,只要将三相调压器的主轴分解成单相,可以对每一相的电压进行调节即可。
图2 改造后的三相调压器原理图
经过改造的三相调压器可先进行粗略的升压,待检测仪器显示接近400V时在进行每一相的微调,最终达到三相平衡输出400V的目的,用改造后的调压器做三相配电变压器空载试验时的输出电压如下:
表2 改造后调压器接空载变压器后的输出电压
由上表可以看出:经过对调压器转轴的改变,再加上试验时的反复调整,三相电压输出平衡度明显提高。
三、效果检查
为了进一步检查改造后的三相调压器的实用性,现分别用改造前和改造后的调压器对三台10kV配电变压器的空载损耗测试数据进行比较(其他使用的仪器仪表均一致):
表3 改造前后空载试验数据的比较
由表3可以看出,在使用改造前的三相调压器进行试验时,由于试验时三相调压器的输出电压不稳定、不平衡,只能达到表1的电压水平,在这种电压下测试出来的试验数据与原始出厂数据相比,有的偏大,有的偏小,而且幅度都比较大,一旦误差超过+5%,就会对变压器造成误判(省标规定空载损耗超过+5%为不合格)。利用改造后的三相调压器对10kV配电变压器进行空载损耗测试时,由于能够达到表2的电压水平,三相电压基本可以保持在400V,从而可以测量出比较准确真实的空载损耗值,更加有利于对配电变压器的判断,分析问题的所在。
四、结论
通过以上分析,可以看出,经过对三相调压器的改造,可以比较准确的测量出配电变压器的空载损耗,杜绝部分不法厂家和商人通过非法手段将老旧高损耗的变压器经过改装就以次充好,为电网的安全可靠运行把好关,也为节能减排在用电上得到真正的实施。最后,因时间仓促,本文所列的各个试验数据未将试验接线损耗、表计损耗等因素排除在外,导致试验数据存在一定的误差,若能将这些问题解决,空载损耗的测试将会更加准确。
参考文献:
[1]朱英浩.新编变压器实用技术问答[M].沈阳:辽宁科学技术出版社,2001.
[2]李丹娜.电力变压器应用技术[M].北京:中国电力出版社,2009.
[3]邢道清.变压器检修与电气试验[M].北京:机械工业出版社,2009.
[4]胡启凡.变压器试验技术[M].北京:中国电力出版社,2010.