增强CT影像组学和机器学习在术前预测肝细胞癌微血管侵犯中的应用价值

来源 :中华医学杂志 | 被引量 : 0次 | 上传用户:elements17
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的:探讨基于双期增强CT影像组学特征的机器学习模型术前预测肝细胞癌微血管侵犯(MVI)的价值。方法:回顾性分析2015年1月至2020年5月在苏州大学附属第一医院经病理确诊的148例[男106例,女42例,年龄(58±11)岁]肝细胞癌患者的资料,其中MVI阳性88例,MVI阴性60例。按照约7∶3的比例随机分配为训练集和验证集。利用MaZda软件提取肝细胞癌动脉期和门静脉期3D影像组学特征,采用3种特征选择方法联合(FPM法)和Lasso回归进行特征筛选,得到最优特征子集。然后用6种机器学习算法构建预测模型,采用受试者工作特征(ROC)曲线评估模型的预测能力,并计算出曲线下面积(AUC)、准确度、灵敏度和特异度。结果:MaZda软件提取肝细胞癌动脉期和门静脉期的影像组学特征,各239个。利用FPM法和Lasso 回归进行特征筛选可分别得到7个动脉期和14个门静脉期最优特征。基于动脉期的7个最优特征构建的决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络等模型预测验证集肝细胞癌MVI的AUC值分别为0.736、0.910、0.913、0.915、0.897、0.648,其中支持向量机的AUC值最高,其准确度、灵敏度和特异度分别为95.35%、95.83%和94.74%。利用门静脉期的14个最优特征构建的上述机器学习模型预测验证集肝细胞癌MVI的AUC值分别为0.873、0.876、0.913、0.859、0.877、0.834,其差异均无统计学意义(均n P>0.05),其中随机森林模型的AUC值最高,其准确度、灵敏度和特异度分别为90.70%、87.50%和94.74%。n 结论:基于双期增强CT影像组学特征的机器学习模型可用于术前预测肝细胞癌微血管侵犯。其中,支持向量机和随机森林模型具有较高的预测效能。“,”Objective:To explore the value of machine learning models in preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) based on dual-phase contrast-enhanced CT radiomics features.Methods:The data of 148 patients [106 males and 42 females, with an average age of (58±11) years] with HCC confirmed by pathology in the First Affiliated Hospital of Soochow University from January 2015 to May 2020 were retrospectively analyzed, including 88 cases of positive MVI and 60 cases of negative MVI. According to the ratio of 7∶3, the patients were randomly divided into the training and validation sets, respectively. The three-dimensional (3D) radiomics features of HCC in arterial phase (AP) and portal venous phase (PP) were extracted by MaZda software, and the optimal feature subset was obtained by combining three feature selection methods (FPM method) and Lasso regression. Then, six machine learning methods were used to build the prediction models. Receiver operating characteristic (ROC) curves were drawn to evaluate the prediction ability of the aforementioned models, and the area under the curve (AUC), accuracy, sensitivity and specificity were calculated.Results:Radiomics features of HCC in AP and PP were extracted by MaZda software, with 239 in each phase. There were 7 optimal features in AP and 14 optimal features in PP selected by FPM method and Lasso regression, respectively. The AUCs of decision tree, extreme gradient boosting, random forest, support vector machine (SVM), generalized linear model, and neural network based on the 7 optimal features in AP in the validation set were 0.736, 0.910, 0.913, 0.915, 0.897, 0.648, respectively. The SVM had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 95.35%, 95.83% and 94.74%, respectively. Likewise, the AUCs of machine learning models in prediction of MVI in HCC based on the 14 optimal features in PP in the validation set were 0.873, 0.876, 0.913, 0.859, 0.877, 0.834, respectively, and there were no significant differences (all n P>0.05). The random forest had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 90.70%, 87.50% and 94.74%, respectively.n Conclusion:Machine learning models based on dual-phase enhanced CT radiomics features can be used in preoperative prediction of MVI in HCC, particularly the SVM and random forest models have high prediction efficiency.
其他文献
美丽迷人的小兴安岭是一片神奇的绿色海洋,这里就是红松的故乡。同样有着红松般性格的关思伟,用他的睿智、倔强、刚毅和执着演绎着一段段动人传奇的故事!“依靠四大战略、解
种子她是个北京姑娘,却与源自南方的越剧结下了不解之缘。因父母常年驻国外工作,她随姥姥长大,家里的收音机常常播放戏曲,潜移默化中一颗戏曲的种子在她小小的心里播下,她常
曾经的一部电视连续剧《亮剑》引燃荧屏,打动亿万观众的心弦,其中夺目的剧名“亮剑”二字,竟出自一位卫国将军之手。慕名预约8月1 1日上午8时登门拜访崔根峰将军,显然占用了
21世纪,我们的生活被蓊蓊郁郁的“绿”充斥着:绿色食品、绿色电器,绿色家装……我们一样也割舍不了。于是,涌现出许多绿色耕耘者,他们播下绿色的种子,使大家收获了健康的物质
一、激发学生的学习兴趣,培养学生的创新意识  笔者在初中物理课程的实际教学中发现,学习兴趣的获得是培养学生创新意识的重要前提,因此,教师在课堂教学中要有意识地创设教学情境,结合教材内容,提出一些极具启发性的问题,将学生引入问题的相关情境之中,不断激发学生的学习兴趣和培养学生的创新意识。  就初中物理课程而言,学生学习兴趣的提高和创新意识的培养需要做到如下几点:(1)在教学中要根据教材,并结合实际的
农村英语教育的重点在于中学课堂培养学生学习英语的兴趣,学生英语的提高也主要是在中学实现的。下面就农村高中英语教学中存在的问题进行简单的分析,并提出针对性的解决方案
提起薛中锐,许多山东人会说出由他主持的电视节目——《新故事客栈》,每天晚上七点半,薛中锐都会在山东电视台公共频道以他独特的嗓音抒以诚挚的情感,为观众讲述遍历人世间酸
叶圣陶先生曾说过:“什么是教育?教育就是培养良好的习惯。”播种行为,收获习惯;播种习惯,收获品格;播种品格,收获命运。培养良好的兴趣爱好和高雅的艺术素养,为学生的可持续
让学生走出课本、走出课堂、走进大自然、走进书籍、走进电视,开阔他们的视野,丰富他们的情感,进而积累作文素材。只有储备了丰富的知识经验,学生作文才能有话可写、有情可抒
期刊
作文教学可以进行不同的尝试,通过多年实践,我对研究性学习下的作文教学有如下的几点体会。一、自主选题阶段学期初,我们安排两节自主选题课。为什么安排在学期初?学生通过假
期刊