论文部分内容阅读
提出一种用样本熵作为特征进行注意力相关脑电信号的分析与分类处理、并采用支持向量机(SVM)算法实现分类器的方法.7位年龄在20-30岁之间的男性受试者接受了执行3种不同注意任务状态下的测试.数据分析结果显示:样本熵分类法对注意任务相关脑电信号分类的正确率可达85.5%,优于传统频段能量法获得的分类精度(77.9%).这个结果暗示了样本熵能有效地识别出自发脑电中注意力相关信息,因而它可在脑电生物信息反馈治疗系统设计中获得广泛的应用.