浅谈高考数学命题新趋势及相关试题解答

来源 :考试周刊 | 被引量 : 0次 | 上传用户:yhmlivefor52
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:随着新课标高考改革的稳步推进,高考数学中对于中国古代数学文化、数学生活相结合的题目日益成为考查熱点。比如2017年全国Ⅰ卷理科第2题以我国古代的太极为背景,考查几何概型;第12题将数列与大学生创业相结合等。作为高中生,我们需要及时把握高考命题的新趋势,同时也要在平时不断丰富数学文化知识、提升新背景下的数学解题能力。
  关键词:新课标高考改革;高考数学;传统文化与数学;数学与生活
  一、 概述
  近年来的新课标高考数学试卷,逐渐重视了对传统文化知识、数学与生活相结合等方面的考查。数学考题一改以往的“为了解题而解题”,而增强了与生活、文化相结合,这越来越成为新课标高考改革的热点与趋势。2017年的理科数学考试大纲指出:“要求考生具有一定的数学视野,认识数学的科学价值和人文价值……精心设计考查数学主体内容、体现数学素质的试题……展现数学的科学价值和人文价值,努力实现全面考查综合数学素养的要求。”“本次《数学高考考试大纲》修订的原则是:贯彻改革需要,融入科研成果,体现时代气息,彰显学科特色。”这体现了知识与能力并重、科学与人文兼顾的精神,同时,高考中对学生关于此类题目的解题能力要求升高,这既是对我国数学文化的积极弘扬,更是对学生数学素养的一种全面的考察,在做题中也能培养学生的综合能力。接下来,我将引用部分例题来分析新高考数学的命题热点并对题目予以解答。
  二、 有关题目
  【例1】《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等。问各德几何。”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列。问五人各得多少钱?”(“钱”是古代的一种重量单位)。在这个问题中,E所得为()
  A. 2/3钱B. 4/3钱C. 5/6钱D. 3/2钱
  解答选B项。依题意可设A、B、C、D、E所得钱分别为a-2d,a-d,a,a d,a 2d,
  由题意,a-2d a-d=a a d a 2d,即a=-6d,又因为五人钱数总和为5,即5a=5,∴a=1,则E所得a-2d=4/3。
  【例2】《九章算术》商功章有题:一圆柱形谷仓,高一丈三尺三又三分之一寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为()
  A. 1丈3尺B. 5丈4尺
  C. 9丈2尺D. 48丈6尺
  解答选B项。设圆柱形谷仓底面半径为r尺,由题意得,谷仓高h=40/3尺。于是谷仓的体积V=πr2·h≈2000×1.62,解得r≈9。∴圆柱底圆周长约为2πr≈54尺=5丈4尺。
  试题背景前两个例题引用了《九章算术》中的题目。《九章算术》是中国古代数学专著,收有246个与生产生活实践有联系的应用问题。它的出现标志着中国古代数学体系的形成。后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。
  【例3】刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积。刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4π。后人导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,r为球的半径,也即正方形的棱长均为2r,从而计算出了球体积计算公式。记所有棱长都为r的正四棱锥的体积为V正,棱长为2r的正方形的方盖差为V方盖差,则V方盖差与V正之比为()
  A. 12B. 22C. 2D. 3
  解答选C项。由题意算出V方盖差=r3-18V牟=13r3,又因为棱长均为r的正四棱锥体积V正=26r3,所以方盖差体积与正四棱锥体积之比为2。
  试题背景本题考查了牟合方盖的相关知识。牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,类似于现在的微元法。由于其采用的模型像牟合的方形盒,故称为牟合方盖。
  三、 总结
  通过个人的做题经验总结分析出:在新课标高考数学中,最易涉及数学与文化、数学与生活类的试题题型有算法、概率、数列等,像是今年的全国Ⅰ卷理科第2题以我国古代的太极为背景,考查几何概型;第12题将数列与大学生创业相结合;Ⅱ卷理科第3题引用了《算法统宗》中的问题等。涉及的中国古代数学著作除题目所引外还有《张邱建算经》、《数书九章》等;数学工具还有秦九韶算法、更相减损术、祖暅原理、杨辉三角等,在课余时间我们应该去认真学习,广泛涉猎。
  中华传统文化源远流长,现实生活也与每位学生息息相关。清朝刘开《问说》中写到:“理无专在,而学无止境也。”在高考新形势下,作为学生,我们不仅需掌握好解题的能力,更需要不断学习,了解试题背后的文化,吸收古人的精华,同时锻炼试题与生活、抽象与具体之间的转化能力,不断提高自身的综合素质。
  参考文献:
  [1]2017年高考全国统一考试大纲:理科数学,2017.
  [2]2017年普通高等学校招生全国统一考试·理科数学(全国Ⅰ卷),2017.
  [3]安徽省江南十校2017届高三3月联考数学(理)试题,2017.
  [4]重庆一中2016高三下高考模拟考试试卷数学(理),2016.
  作者简介:
  姜永哲,山东省济南市,山东师范大学附属中学2015级29班。
其他文献
会议
黄河流域及下游两岸工农业的高速发展无水与黄河水资源密切相关。在目前的黄河水资源利用中,河川径流利用率达50℅,入海径流量越来越少,下游出现了严重的缺水、断流现象。该文通过
美育是以形象思维为主,以感情交流为纽带,用美的事物激发人们的情感共鸣,达到潜移默化教育目的的教育手段之一.以美育人,这种特殊的教育手段,它具有具体生动的形象性、丰富多
摘要:我国教学改革不断深化,传统的教学方式已经不能满足学生学习的需求。在此情况下,生本导学教学模式逐渐地被应用到高中数学教学过程中,促使学生数学学习积极性提高。因此,本文将主要探讨高中数学函数教学生本导学模式的应用对策,为进一步提升高中数学函数教学的效率提供合理的参考意见。  关键词:高中数学;函数教学;生本导学;应用探讨  一、 引言  函數是高中数学知识教学的重点内容,并且贯穿于高中数学教学的
2002年中考题由肇庆市教研室负责命题,基本按照广东省中考的题型,但作适当调整。阅读理解题除继续保持原有的两篇文章外,近两年的肇庆市中考英语都增加了一篇短文。此题要求
压差传感器的应用实现了负荷传感液压控制,使液压挖掘机获得最佳流量,提高了作业效率和复合操纵性,达到了节能的目的,促进了液压挖掘机的技术进步。 The application of differe
近年来,特别是第三次全教会后,在国家有关方针政策指引下,经过广大教育工作者的努力,我省美育工作取得长足发展:理顺了学校艺术教育管理体制,健全并完善了省市县(区)三级艺术
摘要:数学是思维的体操。学好数学需要学习者具备良好的思考探究能力以及推理创新能力等。学好数学所需要的这些能力与人体左脑的潜能密切相关。幼儿阶段是开发左脑潜能的黄金时期。因此,在幼儿教育阶段必须要对幼儿进行适当的数学教育。然而,在实际教学过程中,由于部分教师采取的教学策略不当,致使幼儿对数学集体教学缺乏浓厚的兴趣。本文将在借鉴相关理论研究成果的基础上,结合自身教学实际,浅显论述一些提高幼儿数学集体教