论文部分内容阅读
【摘 要】科学研究就是寻找现象背后的本质,“数”与“形”之间密不可分,它们相互转化,相辅相成。数形结合思想方法,就是把问题的数量关系和空间形式结合起来去分析问题、解决问题,其实质是将抽象的数学语言与直观的图形结合起来,使得抽象的数学概念或复杂的数量关系直观化、形象化、简单化。
【关键词】小学数学;数形结合;教学方法;形象思维;创新
一、“数形结合”提高学生的学习兴趣
在教学过程中采用数形结合的教学思想不仅可以降低知识点的难度,同时还可以提高学生学习的兴趣。因此,应将数形结合的教学思想应用于小学数学教学中。数形结合思想是数学的本质之一,是数学教学的精髓,在教学过程中应用广泛,贯穿、融合在课堂教学过程中。其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。
(一)“数形结合”更好地揭示数量关系
运用数形结合有时能使数量之间的内在联系变得比较直观,成为解决问题的有效方法之一。在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,化难为易。
(二)有利于更好地理解、掌握数学知识
建构主义认为:学生学习活动的本质是学习者以自身已有的知识和经验为基础的主动建构过程,而非对于教师所授予的知识的被动接受。数学科学是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。
二、“数形结合”训练学生的逻辑思维能力
数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数形结合”的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。
(一)用图像形象的反映科学规律
学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知、建构概念、解决问题,就相当于在原有的知识体系上添砖加瓦,新知识的学习就变成了下位学习。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果,也就是所谓深入浅出。
(二)“数形结合”提高学生形象思维能力
按照現代科学研究的最新成果,人的大脑左右两半球各有不同功能,左半球是主管抽象思维,右半球主管形象思维,两者相互配合,相辅相成,相互促进,才能使个体得到和谐发展。“数形结合”思想,不仅能调动右脑思维的积极性和主动性,提高了形象思维能力,还促进了个体左右脑的协调发展,使人变得更聪明。形象思维对学生的学习具有重要的作用。在数学教学中,教师应用启发式教学法,不是满足于将知识和结论直接告诉学生,而是创造问题情景诱导学生自己动脑去“发现结论”,让学生充分展现自己的形象思维过程。
(三)“数形结合”提高学生分析推理能力
在小学数学教学中,培养学生的能力始终是新课程提出的一个重要方面。但是能力不是一朝一夕就能拥有的。能力形成于学习和掌握数学概念的过程中,发展于灵活运用数学知识独立解决问题的过程里。分析综合、归纳类比、抽象概括,都应该从小学开始着力培养。在数学教学中,教师可通过编选一些探索性的题目,让学生去研究,去探讨,去发现。让他们不是从头脑中已有的思维形式和思维方法中去找答案,而是从问题的本身进行具体的分析,进行一系列探索性思维活动,将已有的思维方式大跨度地迁移,从可供选择的途径中筛选出解决问题的方法。在小学数学里解决应用题时,通常是将数量关系转化成线段图。
三、“数形结合”历史渊源
数形结合是最古老的数学问题、也是最古老的研究对象,“结绳记事”就是一种直观的用绳子的形状来反映数字的一种结合。早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。“数形结合”可以分为“以形助数”和“以数解形”。
四、用“数形结合”提高解决实际问题的能力
数形结合是解决问题的有效策略,在数学教学中,抽象的内容教学似乎是一个极大的难题。如果把抽象的数学知识与具体的图形结合起来,挖掘和利用概念中的直观成分,充分利用这种结合,寻找解题思路,就能有效降低教学难度,使问题化难为易,化繁为简,从而得到解决。
五、“数形结合”有利于培养创新能力
目前,推行素质教育已成为教育发展的主流。对学生进行综合素质和能力的培养,是建立新世纪创造性人才队伍的需要,是思维的最高境界。只有具有创造性思维能力的人,才能在各自的领域中有所创造发明,才能推动科学技术、人类社会的向前发展。运用数形结合不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。
六、注意事项
师在小学数学教学的过程中不仅要采用数形结合思想,同时还应让学生养成用数形结合思想解决问题的习惯。准确地说,数形结合是一种数学思想,而不是教学思想。在数学教学的过程中教师应有意识地培养学生运用数形结合思想解决数学问题的习惯,这样就会让学生养成一种思维习惯。
师在运用数形结合教学思想的过程中应充分利用多媒体技术,利用多媒体技术可以更好地向学生展示“形”,还可以利用视频、动画、图片等多种方式来展示“数”“形”变换的具体过程。
数学教学中运用数形结合的教学思想时应加强数学知识和现实生活之间的联系,最好用一些学生平时比较熟悉的事物来表现数形变换的过程,这样不仅可以加深学生对相关知识点的印象,同时还可以提高学生数学学习的兴趣。
七、总结
在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。使得数学教学充满乐趣,相信巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学。
【关键词】小学数学;数形结合;教学方法;形象思维;创新
一、“数形结合”提高学生的学习兴趣
在教学过程中采用数形结合的教学思想不仅可以降低知识点的难度,同时还可以提高学生学习的兴趣。因此,应将数形结合的教学思想应用于小学数学教学中。数形结合思想是数学的本质之一,是数学教学的精髓,在教学过程中应用广泛,贯穿、融合在课堂教学过程中。其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。
(一)“数形结合”更好地揭示数量关系
运用数形结合有时能使数量之间的内在联系变得比较直观,成为解决问题的有效方法之一。在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,化难为易。
(二)有利于更好地理解、掌握数学知识
建构主义认为:学生学习活动的本质是学习者以自身已有的知识和经验为基础的主动建构过程,而非对于教师所授予的知识的被动接受。数学科学是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。
二、“数形结合”训练学生的逻辑思维能力
数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数形结合”的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。
(一)用图像形象的反映科学规律
学生在进入小学学习之前,他们的知识基本上是建立在现实生活中客观事物上的。其知识特点是直观形象,看得见,摸得着。而进入小学阶段,教师如果运用数形结合来引入新知、建构概念、解决问题,就相当于在原有的知识体系上添砖加瓦,新知识的学习就变成了下位学习。这样新学的知识就会具有较高的稳定性和牢固性,而我们也达到了所需的教学效果,也就是所谓深入浅出。
(二)“数形结合”提高学生形象思维能力
按照現代科学研究的最新成果,人的大脑左右两半球各有不同功能,左半球是主管抽象思维,右半球主管形象思维,两者相互配合,相辅相成,相互促进,才能使个体得到和谐发展。“数形结合”思想,不仅能调动右脑思维的积极性和主动性,提高了形象思维能力,还促进了个体左右脑的协调发展,使人变得更聪明。形象思维对学生的学习具有重要的作用。在数学教学中,教师应用启发式教学法,不是满足于将知识和结论直接告诉学生,而是创造问题情景诱导学生自己动脑去“发现结论”,让学生充分展现自己的形象思维过程。
(三)“数形结合”提高学生分析推理能力
在小学数学教学中,培养学生的能力始终是新课程提出的一个重要方面。但是能力不是一朝一夕就能拥有的。能力形成于学习和掌握数学概念的过程中,发展于灵活运用数学知识独立解决问题的过程里。分析综合、归纳类比、抽象概括,都应该从小学开始着力培养。在数学教学中,教师可通过编选一些探索性的题目,让学生去研究,去探讨,去发现。让他们不是从头脑中已有的思维形式和思维方法中去找答案,而是从问题的本身进行具体的分析,进行一系列探索性思维活动,将已有的思维方式大跨度地迁移,从可供选择的途径中筛选出解决问题的方法。在小学数学里解决应用题时,通常是将数量关系转化成线段图。
三、“数形结合”历史渊源
数形结合是最古老的数学问题、也是最古老的研究对象,“结绳记事”就是一种直观的用绳子的形状来反映数字的一种结合。早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。“数形结合”可以分为“以形助数”和“以数解形”。
四、用“数形结合”提高解决实际问题的能力
数形结合是解决问题的有效策略,在数学教学中,抽象的内容教学似乎是一个极大的难题。如果把抽象的数学知识与具体的图形结合起来,挖掘和利用概念中的直观成分,充分利用这种结合,寻找解题思路,就能有效降低教学难度,使问题化难为易,化繁为简,从而得到解决。
五、“数形结合”有利于培养创新能力
目前,推行素质教育已成为教育发展的主流。对学生进行综合素质和能力的培养,是建立新世纪创造性人才队伍的需要,是思维的最高境界。只有具有创造性思维能力的人,才能在各自的领域中有所创造发明,才能推动科学技术、人类社会的向前发展。运用数形结合不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。
六、注意事项
师在小学数学教学的过程中不仅要采用数形结合思想,同时还应让学生养成用数形结合思想解决问题的习惯。准确地说,数形结合是一种数学思想,而不是教学思想。在数学教学的过程中教师应有意识地培养学生运用数形结合思想解决数学问题的习惯,这样就会让学生养成一种思维习惯。
师在运用数形结合教学思想的过程中应充分利用多媒体技术,利用多媒体技术可以更好地向学生展示“形”,还可以利用视频、动画、图片等多种方式来展示“数”“形”变换的具体过程。
数学教学中运用数形结合的教学思想时应加强数学知识和现实生活之间的联系,最好用一些学生平时比较熟悉的事物来表现数形变换的过程,这样不仅可以加深学生对相关知识点的印象,同时还可以提高学生数学学习的兴趣。
七、总结
在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。使得数学教学充满乐趣,相信巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学。