论文部分内容阅读
Real-time liquefaction monitoring and warning techniques are new ways to mitigate liquefaction hazard. A key point is to establish a reverse liquefaction detection method based on seismic records. However, the existing methods are quite limited and the reliability requires verification. On Feb. 22, 2011 an earthquake of magnitude 6.3 struck at New Zealand’s South Island. Remarkable liquefaction phenomena were reported, which provide an opportunity to verify the existing liquefaction detection methods. 27 acceleration records within 50 km to the epicenter were selected to perform a blind detection by using the existing methods, including Miyajima method, Suzuki method, Kostadinov-Yamazaki method and Yuan-Sun method. The blind detection results indicate that Yuan-Sun method gives correct results for seven confirmed sites, and Suzuki method and Yuan-Sun method yield correct detection for a reported non-liquefied site. Four methods including the Yuan-Sun method give identical detection for four sites and three methods also including the Yuan-Sun method give identical detection for ten sites. Besides, there are five sites, for which the four methods give opposite detection.
Real-time liquefaction monitoring and warning techniques are new ways to mitigate liquefaction hazard. A key point is to establish a reverse liquefaction detection method based on seismic records. However, the existing methods are quite limited and the reliability requires verification. On Feb. 22 , 2011 an earthquake of magnitude 6.3 struck at New Zealand’s South Island. Remarkable liquefaction phenomena were reported, which provide an opportunity to verify the existing liquefaction detection methods. 27 acceleration records within 50 km to the epicenter were selected to perform a blind detection by using The existing methods, including Miyajima method, Suzuki method, Kostadinov-Yamazaki method and Yuan-Sun method. The blind detection results indicate that Yuan-Sun method gives correct results for seven confirmed sites, and Suzuki method and Yuan-Sun method yield correct detection for a reported non-liquefied site. Four methods including the Yuan-Sun method give identical detection for four sites and three methods also including the Yuan-Sun method give identical detection for ten sites. Besides, there are five sites, for which the four methods give opposite detection.