论文部分内容阅读
【摘 要】在长时间的教学中发现,数学的发展中每一个重要知识的发现和证明,除了要求发现者具有一定的演绎推理能力之外,还要具有一定的合乎情理的逻辑推理。推理能力对于数学知识的学习和探索具有相当重要的作用。
【关键词】初中数学 推理能力 培养
中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2017.11.081
推理是数学的基本思维方式,也是人们学习和生活经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事實出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。从中可看出推理能力在初中数学中占据着重要的地位。那么,在初中数学教学中如何培养学生的推理能力呢?
一、拓宽学生的思维
教学环节就是一步步、环环相扣地引导学生进行知识的探索、理解和掌握。在数学知识的教学活动之中,学生必须有全神贯注的精神和灵活、发散的思维能力,这样才能够有效跟随教师的指引进行知识的探索和学习,才能够进一步发展自己的推理论证能力,全面提升自己的综合素质。
在初中数学教学环节中,对于数学中许多定理的学习实验,归纳的教学方式有时会比较适合。教师要正确处理数学实验的应用和实施,确保学生探究知识的科学性和合理性,跟随当前教育改革的要求。在数学知识中包含着严谨性的数学科学知识,也包含着实验性的归纳科学知识,这就需要教师在教学环节中要重视数学实验对学生创新思维、推理能力的作用。
二、引导学生观察
长期以来,中学数学教学一直强调教学的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。事实上,数学发展史中的每一个重要的发现,除演绎推理外,合情推理也起重要作用,如哥德巴赫猜想、费尔马大定理、四色问题等的发现,其他学科的一些重大发现也是科学家通过合情推理、提出猜想、假说和假设,再经过演绎推理或实验得到的,也就是恰当创设情境,引导学生观察。
因此,我们不仅要培养学生演绎推理能力,而且要培养学生合情推理能力。《标准》要求学生“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例。”也就是要求学生在获得数学结论时要经历合情推理到演绎推理的过程。合情推理的实质是“发现—猜想”,因而关注合情推理能力的培养有助于发展学生的创新精神,当然,由合情推理得到的猜想,需要通过演绎推理给出证明或举出反例否定。合情推理的条件与结论之间是以猜想与联想作为桥梁的,直觉思维是猜想与联想的思维基础,培养学生善于合情推理的思维习惯是形成数学直觉,发展数学思维,获得数学发现的基本素质。因此,在数学教学中,既要强调思维的严密性,结果的正确性,也要重视思维的直觉探索性和发现性,即应重视数学合情推理的合理性和必要性。充分发挥课堂教学的作用,渐进而有序地培养数学合情推理能力,提高学生素质,促进学生健康、全面地发展。
合情推理并非盲目的、漫无边际的胡乱猜想。它是以数学中某些已知事实为基础,通过选择恰当的材料创设情境,引导学生观察。欧拉曾说过:“数学这门科学,需要观察,还需要实验。”观察是人们认识客观世界的门户。观察可以调动学生的各种感官,在已有知识的基础上产生联想,通过观察还可以减少猜想的盲目性,同时观察力也是人的一种重要能力。所以在教学中要给学生必要的时间和空间进行观察,培养良好的观察习惯,提高观察力,发展合理推理能力。例如,把20,21,22,23,24,25这六个数分别放在六个圆圈里,使这个三角形每边上的三个数之和相等。通过观察图形以及这六个数后,我们应该想到,较大的几个数或较小的几个数不能同时在三角形的某一边上,否则其和就会太大或太小,也就是说,可以把较小的三个数分别放在三个顶点上,再把三个较大的数放在相应的对边上。
三、激发学生猜想
数学猜想是数学研究中合情的推理,是数学证明的前提。只有对数学问题的猜想,才会激发学生解决问题的兴趣,启迪学生的创造性思维,从而发现问题、解决问题。数学猜想是在已有数学知识和数学事实的基础上,对未知量及其规律做出的似真判断,是科学假说在数学的体现,它一旦得到论证便上升为数学理论。牛顿有一句名言:“沒有大胆的猜想,就做不出伟大的发现。”数学家通过“提出问题—分析问题—作出猜想—检验证明”,开拓新领域,创立新理论。在中学数学教学中,许多命题的发现、性质的得出、思路的形成和方法的创造,都可以通过数学猜想而得到。通过猜想不仅有利于学生牢固地掌握知识,也有利于培养他们的推理能力。
四、注意所学知识的比较和归纳
因为推理过程就是一个论证过程,它必须要有理论依据,而数学推理论证的依据是已知条件和学生已学过的定义、定理、公理等。这就要求学生在学习过程中善于总结和归纳,如果学生不归纳总结,学生所学的知识是松散的、零碎的,没有形成网络化,这就给推理论证带来了一定的困难。在平时的教学中,每学一节、一章,笔者都让学生前后联系,分门别类进行归纳、总结和比较。另外,对于一些证明方法,要求学生进行归纳、总结。例如:证两条线段相等,证两条直线平行,证两角相等,证两线垂直有哪些方法等。
总之,数学教学中对学生进行合情推理能力的培养,对于我们教师,能提高教学效率,增加课堂教学的趣味性,优化教学条件,提升教学水平和业务水平。对于学生,它不但能使学生学到知识,会解决问题而且能使学掌握在新问题出现时该如何应对的思想方法。
【关键词】初中数学 推理能力 培养
中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2017.11.081
推理是数学的基本思维方式,也是人们学习和生活经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事實出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。从中可看出推理能力在初中数学中占据着重要的地位。那么,在初中数学教学中如何培养学生的推理能力呢?
一、拓宽学生的思维
教学环节就是一步步、环环相扣地引导学生进行知识的探索、理解和掌握。在数学知识的教学活动之中,学生必须有全神贯注的精神和灵活、发散的思维能力,这样才能够有效跟随教师的指引进行知识的探索和学习,才能够进一步发展自己的推理论证能力,全面提升自己的综合素质。
在初中数学教学环节中,对于数学中许多定理的学习实验,归纳的教学方式有时会比较适合。教师要正确处理数学实验的应用和实施,确保学生探究知识的科学性和合理性,跟随当前教育改革的要求。在数学知识中包含着严谨性的数学科学知识,也包含着实验性的归纳科学知识,这就需要教师在教学环节中要重视数学实验对学生创新思维、推理能力的作用。
二、引导学生观察
长期以来,中学数学教学一直强调教学的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。事实上,数学发展史中的每一个重要的发现,除演绎推理外,合情推理也起重要作用,如哥德巴赫猜想、费尔马大定理、四色问题等的发现,其他学科的一些重大发现也是科学家通过合情推理、提出猜想、假说和假设,再经过演绎推理或实验得到的,也就是恰当创设情境,引导学生观察。
因此,我们不仅要培养学生演绎推理能力,而且要培养学生合情推理能力。《标准》要求学生“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例。”也就是要求学生在获得数学结论时要经历合情推理到演绎推理的过程。合情推理的实质是“发现—猜想”,因而关注合情推理能力的培养有助于发展学生的创新精神,当然,由合情推理得到的猜想,需要通过演绎推理给出证明或举出反例否定。合情推理的条件与结论之间是以猜想与联想作为桥梁的,直觉思维是猜想与联想的思维基础,培养学生善于合情推理的思维习惯是形成数学直觉,发展数学思维,获得数学发现的基本素质。因此,在数学教学中,既要强调思维的严密性,结果的正确性,也要重视思维的直觉探索性和发现性,即应重视数学合情推理的合理性和必要性。充分发挥课堂教学的作用,渐进而有序地培养数学合情推理能力,提高学生素质,促进学生健康、全面地发展。
合情推理并非盲目的、漫无边际的胡乱猜想。它是以数学中某些已知事实为基础,通过选择恰当的材料创设情境,引导学生观察。欧拉曾说过:“数学这门科学,需要观察,还需要实验。”观察是人们认识客观世界的门户。观察可以调动学生的各种感官,在已有知识的基础上产生联想,通过观察还可以减少猜想的盲目性,同时观察力也是人的一种重要能力。所以在教学中要给学生必要的时间和空间进行观察,培养良好的观察习惯,提高观察力,发展合理推理能力。例如,把20,21,22,23,24,25这六个数分别放在六个圆圈里,使这个三角形每边上的三个数之和相等。通过观察图形以及这六个数后,我们应该想到,较大的几个数或较小的几个数不能同时在三角形的某一边上,否则其和就会太大或太小,也就是说,可以把较小的三个数分别放在三个顶点上,再把三个较大的数放在相应的对边上。
三、激发学生猜想
数学猜想是数学研究中合情的推理,是数学证明的前提。只有对数学问题的猜想,才会激发学生解决问题的兴趣,启迪学生的创造性思维,从而发现问题、解决问题。数学猜想是在已有数学知识和数学事实的基础上,对未知量及其规律做出的似真判断,是科学假说在数学的体现,它一旦得到论证便上升为数学理论。牛顿有一句名言:“沒有大胆的猜想,就做不出伟大的发现。”数学家通过“提出问题—分析问题—作出猜想—检验证明”,开拓新领域,创立新理论。在中学数学教学中,许多命题的发现、性质的得出、思路的形成和方法的创造,都可以通过数学猜想而得到。通过猜想不仅有利于学生牢固地掌握知识,也有利于培养他们的推理能力。
四、注意所学知识的比较和归纳
因为推理过程就是一个论证过程,它必须要有理论依据,而数学推理论证的依据是已知条件和学生已学过的定义、定理、公理等。这就要求学生在学习过程中善于总结和归纳,如果学生不归纳总结,学生所学的知识是松散的、零碎的,没有形成网络化,这就给推理论证带来了一定的困难。在平时的教学中,每学一节、一章,笔者都让学生前后联系,分门别类进行归纳、总结和比较。另外,对于一些证明方法,要求学生进行归纳、总结。例如:证两条线段相等,证两条直线平行,证两角相等,证两线垂直有哪些方法等。
总之,数学教学中对学生进行合情推理能力的培养,对于我们教师,能提高教学效率,增加课堂教学的趣味性,优化教学条件,提升教学水平和业务水平。对于学生,它不但能使学生学到知识,会解决问题而且能使学掌握在新问题出现时该如何应对的思想方法。