论文部分内容阅读
【摘要】:高层建筑的结构抗震性能对建筑安全起着至关重要的作用,本文主要对高层建筑的结构抗震分析和设计进行研究,利用国内现行规范,就高层建筑的结构抗震分析与设计中常见的问题和新的趋势进行重点探讨。
【关键词】:结构抗震;高层建筑;抗震分析与设计
当下,我国高层建筑发展迅速。抗震分析与设计是结构设计的重要内容,高层建筑更是如此。我国是一个地震多发国家,这就要求我们的建筑必须能经受得住地震的考验。这些种种都要求结构工程师对高层建筑的结构抗震分析与设计有足够清晰的理解和认识,工作中采取安全可靠的抗震措施和方法提高高层建筑的抗震性能,从而达到“小震不坏、中震可修、大震不倒“。
一、规范对结构抗震分析与设计
我国现行的《抗震规范》对抗震分析与设计计算是基于多遇地震作用的考虑,按照反应谱理论进行地震作用的模拟分析,用弹性力学方法计算内力和位移变化,然后用极限状态方法设计出结构构件。
结构弹塑性分析可分为弹塑性动力分析和弹塑性静力分析两大类。弹塑性动力分析,采用杆模型和层模型等简化的结构计算模型。杆模型计算的优点是可以得到杆件状态随时间的变化过程,也可得到各楼层的反应。但耗时多、费用昂贵、结果数据量大且分析比较繁冗,在国外也极少采用。层模型计算能得到各楼层的反应,例如层剪力、楼层侧移和层间转角、层间位移延性比等,它主要是从宏观上即层间变形检验结构在大震作用下的安全性。层模型计算的数据相对较少,适宜于进行宏观检验,也便于计算多条地震波作用。但无论是采用杆模型还是层模型进行弹塑性时程分析,计算结果受地震波的影响较大且不存在唯一答案,有时难以判断。
曾经有一些学者提出弹塑性静力分析方法用于结构抗震分析。这种方法有较多优点。由弹塑性静力分析,可以了解结构中每个构件的内力和承载力的关系以及各杆件承载力间的相互关系;检查是否符合强柱弱梁,并可发现设计的薄弱部位;还可得到不同受力阶段的侧移变形,给出“底部剪力一预点侧移”关系曲线以及“层剪力一层间变形”关系曲线等等。后者即可作为各楼层的“层剪力一层间位移”骨架线,它是进行层模型弹性时程分析所必须的参数。只要结构一定,其结果不受地震波的影响,只与初始楼层水平荷载的分布有关。
二、结构抗震分析与设计中的问题
1.设计高度问题
国内的《高规》规定综合考虑经济与适用的原则,确定出了各种常见结构体系的最大适用高度。
这个高度是在我国目前建筑科研水平、经济发展水平和施工技术水平下,较为稳妥的,也是与目前整个土木工程规范体系相协调的。对于超高限建筑物,应当采取科学谨慎的态度。因为在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化,随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
2.结构体系问题
在地震多发区,采用何種建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框一筒、筒中筒和框架一支撑),这些也是其他国家高层建筑采用的主要体系。但国外特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。混合结构的钢筋混凝土内筒往往要承受80%以上的地震作用剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,且加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。
3.抗震措施与构造措施在某些项目中设计较低。
现在许多专家学者提出,现行的建筑结构设计安全度己不能适应国情的需要,认为我国“取用了可能是世界上最低的结构设计安全度”并主张“建筑结构设计的安全度水平应该大幅度提高”。此外,对于“小震不坏,中震可修,大震不倒”这个抗震设计原则,在新形势下也有重新审核的必要。
设防标准低的根本原因在于国家财力物力有限。我国建筑结构抗震设计除了设防烈度较低外,具体抗震计算方法和构造规定的安全度也不如国外,在配筋率、轴压比、梁柱承载力匹配等一系列保证抗震延性的要求上,与外国相比,也有异同。随着社会财富的增长,结构失效带来的损失愈来愈大,加之结构造价在整个投资中的比例下降,因而有人主张结构在设防烈度下应该采用弹性设计,特别是高烈度区要有严格的抗震措施与抗震构造措施来保证结构的安全。
三、结构抗震分析与设计的新方向
(1)基于性能的结构抗震设计现场理论方法。
上世纪90年代美国学者Bertero. R和Bertero. V. V等研究人员首先明确提出了基于性能的抗震设计概念,这种方法主要是将结构的性能目标转化为破损指标和位移需求,并且对基于性能的抗震设计进行了持续的研究,并将其作为新一代的抗震设计方法。
(2)动力时程响应分析的状态空间迭代法。
这种方法把 现代 控制理论中的状态空间理论应用到高层建筑结构动力响应问题。根据结构动力方程,引入位移与速度为状态变量,导出状态方程,给出非齐次状态方程的解,进而建立状态空间迭代计算格式。经工程实例验算,具有较高精度。特别对多自由度体系的多输入、多输出等问题的动力响应解法,效率较高。
(3)材料参数随机性的抗震模糊可靠度分析。
该方法从结构整体性能出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性,烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。
结论:
高层建筑的结构抗震是结构设计的一个重要环节。设计的合理与否直接影响房屋的质量和人民的生命、财产安全。随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。针对不同工程的特点和结构设计情况,特别是对于工程的超限情况,抗震设计的技术措施应当比现行规范要求更为严格,以便设计出更好的建筑结构,从而保证建筑的安全和质量。
参考文献:
[1]张达明;杜嘉斌.超限高层抗震性能设计方法总结[J].低碳世界2016(14)
[2]王丹.浅析高层建筑结构抗震设计[J].消费导刊,2008(11).
【关键词】:结构抗震;高层建筑;抗震分析与设计
当下,我国高层建筑发展迅速。抗震分析与设计是结构设计的重要内容,高层建筑更是如此。我国是一个地震多发国家,这就要求我们的建筑必须能经受得住地震的考验。这些种种都要求结构工程师对高层建筑的结构抗震分析与设计有足够清晰的理解和认识,工作中采取安全可靠的抗震措施和方法提高高层建筑的抗震性能,从而达到“小震不坏、中震可修、大震不倒“。
一、规范对结构抗震分析与设计
我国现行的《抗震规范》对抗震分析与设计计算是基于多遇地震作用的考虑,按照反应谱理论进行地震作用的模拟分析,用弹性力学方法计算内力和位移变化,然后用极限状态方法设计出结构构件。
结构弹塑性分析可分为弹塑性动力分析和弹塑性静力分析两大类。弹塑性动力分析,采用杆模型和层模型等简化的结构计算模型。杆模型计算的优点是可以得到杆件状态随时间的变化过程,也可得到各楼层的反应。但耗时多、费用昂贵、结果数据量大且分析比较繁冗,在国外也极少采用。层模型计算能得到各楼层的反应,例如层剪力、楼层侧移和层间转角、层间位移延性比等,它主要是从宏观上即层间变形检验结构在大震作用下的安全性。层模型计算的数据相对较少,适宜于进行宏观检验,也便于计算多条地震波作用。但无论是采用杆模型还是层模型进行弹塑性时程分析,计算结果受地震波的影响较大且不存在唯一答案,有时难以判断。
曾经有一些学者提出弹塑性静力分析方法用于结构抗震分析。这种方法有较多优点。由弹塑性静力分析,可以了解结构中每个构件的内力和承载力的关系以及各杆件承载力间的相互关系;检查是否符合强柱弱梁,并可发现设计的薄弱部位;还可得到不同受力阶段的侧移变形,给出“底部剪力一预点侧移”关系曲线以及“层剪力一层间变形”关系曲线等等。后者即可作为各楼层的“层剪力一层间位移”骨架线,它是进行层模型弹性时程分析所必须的参数。只要结构一定,其结果不受地震波的影响,只与初始楼层水平荷载的分布有关。
二、结构抗震分析与设计中的问题
1.设计高度问题
国内的《高规》规定综合考虑经济与适用的原则,确定出了各种常见结构体系的最大适用高度。
这个高度是在我国目前建筑科研水平、经济发展水平和施工技术水平下,较为稳妥的,也是与目前整个土木工程规范体系相协调的。对于超高限建筑物,应当采取科学谨慎的态度。因为在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化,随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
2.结构体系问题
在地震多发区,采用何種建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框一筒、筒中筒和框架一支撑),这些也是其他国家高层建筑采用的主要体系。但国外特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。混合结构的钢筋混凝土内筒往往要承受80%以上的地震作用剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,且加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。
3.抗震措施与构造措施在某些项目中设计较低。
现在许多专家学者提出,现行的建筑结构设计安全度己不能适应国情的需要,认为我国“取用了可能是世界上最低的结构设计安全度”并主张“建筑结构设计的安全度水平应该大幅度提高”。此外,对于“小震不坏,中震可修,大震不倒”这个抗震设计原则,在新形势下也有重新审核的必要。
设防标准低的根本原因在于国家财力物力有限。我国建筑结构抗震设计除了设防烈度较低外,具体抗震计算方法和构造规定的安全度也不如国外,在配筋率、轴压比、梁柱承载力匹配等一系列保证抗震延性的要求上,与外国相比,也有异同。随着社会财富的增长,结构失效带来的损失愈来愈大,加之结构造价在整个投资中的比例下降,因而有人主张结构在设防烈度下应该采用弹性设计,特别是高烈度区要有严格的抗震措施与抗震构造措施来保证结构的安全。
三、结构抗震分析与设计的新方向
(1)基于性能的结构抗震设计现场理论方法。
上世纪90年代美国学者Bertero. R和Bertero. V. V等研究人员首先明确提出了基于性能的抗震设计概念,这种方法主要是将结构的性能目标转化为破损指标和位移需求,并且对基于性能的抗震设计进行了持续的研究,并将其作为新一代的抗震设计方法。
(2)动力时程响应分析的状态空间迭代法。
这种方法把 现代 控制理论中的状态空间理论应用到高层建筑结构动力响应问题。根据结构动力方程,引入位移与速度为状态变量,导出状态方程,给出非齐次状态方程的解,进而建立状态空间迭代计算格式。经工程实例验算,具有较高精度。特别对多自由度体系的多输入、多输出等问题的动力响应解法,效率较高。
(3)材料参数随机性的抗震模糊可靠度分析。
该方法从结构整体性能出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性,烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。
结论:
高层建筑的结构抗震是结构设计的一个重要环节。设计的合理与否直接影响房屋的质量和人民的生命、财产安全。随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。针对不同工程的特点和结构设计情况,特别是对于工程的超限情况,抗震设计的技术措施应当比现行规范要求更为严格,以便设计出更好的建筑结构,从而保证建筑的安全和质量。
参考文献:
[1]张达明;杜嘉斌.超限高层抗震性能设计方法总结[J].低碳世界2016(14)
[2]王丹.浅析高层建筑结构抗震设计[J].消费导刊,2008(11).