论文部分内容阅读
摘 要:教育均衡发展就是培养学生各个方面的意识、思维、能力,让学生感到自己成功了,有成就了,发展了。如何在五年级数学教学中让学生均衡发展呢?本文从设置问题情境激发学生创新意识,诱导学生成功;抓住典型题材发展学生多向思维,培养学生成就感;用好现有教材提高学生解决实际问题的能力和反思能力,促进学生发展三个方面探讨在五年级数学教学中促进学生均衡发展。
关键词:教育均衡发展;数学应用题;教学探究
教育均衡发展是根据学生的不同个性特点,采取不同的教学方法,培养学生的各种意识、思维和能力,让学生有所成功、有所成就、有所发展。而五年级数学应用教学是一至四年级的数学知识学习后,利用这些知识解决实际问题的能力,在解决实际问题中,培养学生的创新意识、多向思维、解决实际问题能力和反思能力,进而促进学生人人能成功,个个有成就,方方面面均衡发展。具体做法如下:
一、设置问题情境激发学生创新意识,诱导学生成功
数学教学中首先应唤起学生的创新意识,使之想创造。而只有在强烈的创新意识引导下,学生才会产生强烈的成功感。要唤起学生的创新意识,须树立创新目标,充分发挥创新潜力和聪明才智,释放创新激情。问题是思维的起点,有了问题,思维才有方向。有了问题,思维才有动力。而小学数学教学中常常用“问题情境”激发学生的创新意识,使他们产生探索新问题、解决新问题的心理倾向和愿望,最后达到成功。例如,当学生学习了长方形和正方形的面积后,我出了这样一题让学生讨论:一个长方形的长增加了3厘米,宽减少3厘米,所得的长方形面积与原来面积一样吗?这一问,充分引起了学生的兴趣,大家议论纷纷,争着回答。一部分学生说一样大,另一部分学生虽然觉得这个答案不对,但又不知怎样才能说明,便都把眼睛看着老师,迫切想得知结果。这时,教师不要急于表态,因为此时学生大脑产生兴奋,大脑在兴奋期里最容易爆发出思维的火花。所以,要把握时机,让他们在练习纸上画画拼拼比较,很快就得出了自己的正确答案。结果并不重要,而过程却是创新能力的经验。因此,要进一步地引导。提问:你们发现了什么规律?学生兴趣很高,继续动手、动脑、讨论、探索。纷纷成功地答道:所得到长方形的周长相等。如果长与宽之差越小的长方形面积越大;当长、宽相等时,便成了正方形,正方形的面积最大。
二、抓住典型题材发展学生多向思维,培养学生成就感
发展学生的多向思维,要落实在具体的课堂教学之中,五年级数学教学也是如此。教学中,教师如能抓住一些典型题型,分层递进,对发展学生的多向思维,培养学生的成就感是十分有益的。
如:学习了分数的意义和性质后,老师在讲解应用题型:“一个三角形三个内角度数的比是3∶2∶1,按角分这个三角形是( )角的三角形。”这一类应用题时,通过分层递进,既引导学生自己解决了问题,发展了学生的多向思维,让学生感到了自己有了成就。
第一向层次思维:求出三个内角判断法。这是学生开始时常用的方法。
第二向层次思维:求一个角判断法。“我们能不能只求出一个角就能判断出这个三角形是什么角的三角形呢?”学生通过思考懂得:只要求出最大的角,因为最大的角是90°,所以这个三角是直角三角形。这一层次比第一层次学生思维上进了一层。
第三向层次思维:直接判断法。“我们能不能不求出任何一个角,直接从三个角的比份上判断这个三角形是什么角的三角形呢?”一石激起千层浪,学生的思维一下子被调动起来。通过讨论,学生懂得:因为3=2+1,最大的角的度数等于其他两个锐角的和,所以可以判断这个三角形是直角三角形。在此基础上,教师可让学生自己总结出自己的成就:
1.如果最大角的比份等于其他两个角的比份之和,则这个三角形为直角三角形。
2.如果最大角的比份大于其他两个角的比份之和,则这个三角形为钝角三角形。
3.如果最大角的比份小于其他两个角的比份之和,则这个三角形为锐角三角形。
学生的多向思维,是靠教师的指导,学生的自主探索得出结果,不是教师的直接说出,关键要让学生动手、动脑、动口。
三、用好现有教材提高学生解决实际问题的能力和反思能力,促进学生发展
现行的小学数学教材已形成一个较为完整的知识体系。如何充分发挥现行五年级数学现有教材的作用,提高学生的解决实际问题能力和反思能力呢?实践证明,通过改编例题或习题,引导学生思考、辨析,可以起到事半功倍之效。
(一)改编例题引发思维,培养学生解决实际问题的能力。
要培养学生用所学知识解决实际问题的能力,在五年级数学教学中,如果能真正把“用教材教”落实到实处,通过改编例题、习题的方式发散学生的思维,对培养学生分析问题和解决问题的能力将会起到积极的作用。如在教学应用题“一段公路,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?”这一工程问题时,在学生掌握了此道题解题思路和方法的基础上,可以将“乙队单独修15天完成”改成:①乙队单独修比甲队多用5天。②乙队单独修的时间是甲队的1.5倍。③乙队的工作效率是甲队的2/3。还可将问题改为:①两队合修几天完成这段公路的?②两队合修几天后还剩这段路的?③甲独修2天后,剩下的乙独修还需几天?这样围绕例题这一中心发散,例题的作用得到充分的发挥。“源于教材,高于教材”的教学机制,在本堂课得到充分体现,促进学生的发展。
(二)改编例题促思辨,提高反思能力。
反思是一种学习和生活的策略。学生在学习新知的过程中总会发生这样那样的错误。在小学数学教学中,如能适时地运用改编例题、习题促进学生进行思考、辨析,进行前馈控制或反馈矫正,一方面可以达到有效防治错误的目的,另一方面还可以提高学生自我反思的能力。
1.前馈控制。即教师根据教学规律或班级的实际情况,将学生在解答有关问题时易错的一些情况,通过改编例题、习题的方式让学生进行对比、辨析,防患于未然。
2.反馈矫正。即当学生在练习中发生错误后,教师根据学生的情况,通过改编例题或习题让学生继续练习,学生在继续练习中产生觉悟,从而有效地纠正学生的错误认识,提高反思能力。
总之,在五年级数学应用题教学中实施教育均衡发展思想,我们要善于设置问题情境激发学生创新意识,诱导学生成功;抓住典型题材发展学生多向思维,培养学生成就感;用好现有教材提高学生解决实际问题的能力和反思能力,促进学生发展。把教育均衡发展的思想落实到具体的数学课堂教学中去。
关键词:教育均衡发展;数学应用题;教学探究
教育均衡发展是根据学生的不同个性特点,采取不同的教学方法,培养学生的各种意识、思维和能力,让学生有所成功、有所成就、有所发展。而五年级数学应用教学是一至四年级的数学知识学习后,利用这些知识解决实际问题的能力,在解决实际问题中,培养学生的创新意识、多向思维、解决实际问题能力和反思能力,进而促进学生人人能成功,个个有成就,方方面面均衡发展。具体做法如下:
一、设置问题情境激发学生创新意识,诱导学生成功
数学教学中首先应唤起学生的创新意识,使之想创造。而只有在强烈的创新意识引导下,学生才会产生强烈的成功感。要唤起学生的创新意识,须树立创新目标,充分发挥创新潜力和聪明才智,释放创新激情。问题是思维的起点,有了问题,思维才有方向。有了问题,思维才有动力。而小学数学教学中常常用“问题情境”激发学生的创新意识,使他们产生探索新问题、解决新问题的心理倾向和愿望,最后达到成功。例如,当学生学习了长方形和正方形的面积后,我出了这样一题让学生讨论:一个长方形的长增加了3厘米,宽减少3厘米,所得的长方形面积与原来面积一样吗?这一问,充分引起了学生的兴趣,大家议论纷纷,争着回答。一部分学生说一样大,另一部分学生虽然觉得这个答案不对,但又不知怎样才能说明,便都把眼睛看着老师,迫切想得知结果。这时,教师不要急于表态,因为此时学生大脑产生兴奋,大脑在兴奋期里最容易爆发出思维的火花。所以,要把握时机,让他们在练习纸上画画拼拼比较,很快就得出了自己的正确答案。结果并不重要,而过程却是创新能力的经验。因此,要进一步地引导。提问:你们发现了什么规律?学生兴趣很高,继续动手、动脑、讨论、探索。纷纷成功地答道:所得到长方形的周长相等。如果长与宽之差越小的长方形面积越大;当长、宽相等时,便成了正方形,正方形的面积最大。
二、抓住典型题材发展学生多向思维,培养学生成就感
发展学生的多向思维,要落实在具体的课堂教学之中,五年级数学教学也是如此。教学中,教师如能抓住一些典型题型,分层递进,对发展学生的多向思维,培养学生的成就感是十分有益的。
如:学习了分数的意义和性质后,老师在讲解应用题型:“一个三角形三个内角度数的比是3∶2∶1,按角分这个三角形是( )角的三角形。”这一类应用题时,通过分层递进,既引导学生自己解决了问题,发展了学生的多向思维,让学生感到了自己有了成就。
第一向层次思维:求出三个内角判断法。这是学生开始时常用的方法。
第二向层次思维:求一个角判断法。“我们能不能只求出一个角就能判断出这个三角形是什么角的三角形呢?”学生通过思考懂得:只要求出最大的角,因为最大的角是90°,所以这个三角是直角三角形。这一层次比第一层次学生思维上进了一层。
第三向层次思维:直接判断法。“我们能不能不求出任何一个角,直接从三个角的比份上判断这个三角形是什么角的三角形呢?”一石激起千层浪,学生的思维一下子被调动起来。通过讨论,学生懂得:因为3=2+1,最大的角的度数等于其他两个锐角的和,所以可以判断这个三角形是直角三角形。在此基础上,教师可让学生自己总结出自己的成就:
1.如果最大角的比份等于其他两个角的比份之和,则这个三角形为直角三角形。
2.如果最大角的比份大于其他两个角的比份之和,则这个三角形为钝角三角形。
3.如果最大角的比份小于其他两个角的比份之和,则这个三角形为锐角三角形。
学生的多向思维,是靠教师的指导,学生的自主探索得出结果,不是教师的直接说出,关键要让学生动手、动脑、动口。
三、用好现有教材提高学生解决实际问题的能力和反思能力,促进学生发展
现行的小学数学教材已形成一个较为完整的知识体系。如何充分发挥现行五年级数学现有教材的作用,提高学生的解决实际问题能力和反思能力呢?实践证明,通过改编例题或习题,引导学生思考、辨析,可以起到事半功倍之效。
(一)改编例题引发思维,培养学生解决实际问题的能力。
要培养学生用所学知识解决实际问题的能力,在五年级数学教学中,如果能真正把“用教材教”落实到实处,通过改编例题、习题的方式发散学生的思维,对培养学生分析问题和解决问题的能力将会起到积极的作用。如在教学应用题“一段公路,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?”这一工程问题时,在学生掌握了此道题解题思路和方法的基础上,可以将“乙队单独修15天完成”改成:①乙队单独修比甲队多用5天。②乙队单独修的时间是甲队的1.5倍。③乙队的工作效率是甲队的2/3。还可将问题改为:①两队合修几天完成这段公路的?②两队合修几天后还剩这段路的?③甲独修2天后,剩下的乙独修还需几天?这样围绕例题这一中心发散,例题的作用得到充分的发挥。“源于教材,高于教材”的教学机制,在本堂课得到充分体现,促进学生的发展。
(二)改编例题促思辨,提高反思能力。
反思是一种学习和生活的策略。学生在学习新知的过程中总会发生这样那样的错误。在小学数学教学中,如能适时地运用改编例题、习题促进学生进行思考、辨析,进行前馈控制或反馈矫正,一方面可以达到有效防治错误的目的,另一方面还可以提高学生自我反思的能力。
1.前馈控制。即教师根据教学规律或班级的实际情况,将学生在解答有关问题时易错的一些情况,通过改编例题、习题的方式让学生进行对比、辨析,防患于未然。
2.反馈矫正。即当学生在练习中发生错误后,教师根据学生的情况,通过改编例题或习题让学生继续练习,学生在继续练习中产生觉悟,从而有效地纠正学生的错误认识,提高反思能力。
总之,在五年级数学应用题教学中实施教育均衡发展思想,我们要善于设置问题情境激发学生创新意识,诱导学生成功;抓住典型题材发展学生多向思维,培养学生成就感;用好现有教材提高学生解决实际问题的能力和反思能力,促进学生发展。把教育均衡发展的思想落实到具体的数学课堂教学中去。