论文部分内容阅读
刚进入高一的学生在学习了集合的含义和表示之后,很快就进入了对函数的学习,函数的内容在高中数学教材中占据了很大的比重,同时又比较抽象,要求学生在学习了函数的基本概念、定理之后,学会运用分析、比较、综合等方法,以便深入学习函数的其他知识,从而准确掌握函数知识的本质和规律.结合多年的教学经验,笔者认为应该在高中数学教学中,着重从以下几方面入手,帮助学生学好函数,为将来的学习打下牢固的基础:
1掌握学生的学习基础,帮助他们树立信心
函数学习从高一开始,面对刚从初中升到高中的学生,学习基础都不一样,理解能力也有不同,教师要及时摸清学生的学习基础,为将要进行的函数教学做好准备,进入函数的教学时,要注意到学生的认知水平、接受能力各有不同这一现状,因材施教,分层教学,充分挖掘每名学生的学习潜力,激发他们的学习热情,引导学生在课堂认真听讲的同时,课后要多做练习、勤于思考,在学习的过程中由潜入深,由易入难,逐步培养他们对学习函数的兴趣,建立起学好函数的信心.例如在讲解函数表达式时,教师可以举出两个例子:
例1 已知:f(x+1)=x-5x+2,求f(x).
例2 已知:f(f(x))=9x+1,求一次函数f(x).
可以让学生思考:有几种解法?根据学生讨论的结果,教师能准确把握学生遇到的问题,再根据学生的疑惑去有针对性的解答,在这种自由宽松的课堂氛围中,教师和学生进行了成功的双向互动,一方面让教师及时掌握了备课时忽视的教学盲点,能够及时为学生答疑;另一方面又让学生进行了探究性学习,培养了学生独立思考的能力.
学生在面对求含参数的二次函数的最大值、最小值时,觉得很困难,容易产生退缩心理,认为自己不会就放弃了,教师在面对这种状况时,应该采用深入浅出的讲解,把题目设计成:
(1)求出下列函数在n∈[0,3]时的最大、最小值:①y=(n-1)2+1;②y=(n+1)2+1;③y=(n-2)2+1.
(2)求函数y=n2-2an+a2+a,n∈[0,3]时的最小值.
(3)求函数y=n2-2n+2,n∈[k,k+1]的最小值.
这种层层递进的方式可以帮助学生理解,让学生知道知识是如何一步步由简入难递进的,从而树立学习的信心,调动积极性.
2在教学中注意培养学生发散思维的能力
要想学好高中数学中的函数,要求学生必须具备丰富的想象力、创造力,才能达到对同一道题产生多种解题思路的效果.作为老师,有责任帮助学生培养发散性思维能力,实现举一反三、触类旁通的解题能力.而不少学生在之前的数学学习中容易形成思维定势,这种因循守旧的思维定势严重阻碍了学生在函数中的学习,要想帮助学生建立良好的发散性思维能力,教师必须首先去观察学生的原有思维框架,帮助学生打破旧有思维,树立独立思考,能熟练运用多种方式解题的能力,重建发散性思维模式.例如,学生在课外数学练习中碰到这种题目:求f(x),使f(x)满足f[f(x)]=x+2…(1),书里的答案是f(x)=x+1.出题者的目的在于,在暗含有“f(x)是一次函数”的题目中,能够通过一次函数的复合关系,达到对复合函数的基本认知.学生对此感到困惑,因为他们不明白“f(x)是一次函数”的这一条件,虽然老师寄予了提示,但是许多学生还是保持对这一条件的怀疑,在这种情况下,教师可以引导学生探求函数方程(1)的一个非线性解,探究能否构造一个满足以上假设的例子.根据f(x)的基本性质,可以得知,f(x)的定义域和值域是一切实数,如果有x1,x2能够使f(x1)=f(x2),那么f(f(x1))=f(f(x2));根据函数的复合满足结合律,便可以得出f(x+2)=f(x)+2…(2),所以,只要对满足0≤x≤2的实数x定义f(x),再按照(2)将f(x)的定义拓展到整个实数轴上便可得出以上推论.学生在这个解题过程中,不仅自己探索分析,而且在老师的指导下得出了正确的结论,学习的兴趣很快被调动起来,也达到了发散性思维的锻炼,有助于学生扩展思路,提高成绩.
3教会学生使用正确的学习方法
由于函数具有高度的抽象性和扩展性,这就要求在高中数学函数教学中,老师不仅要帮助学生打好基础,培养发散性思维能力,而且要教会学生使用正确的学习方法,具备了对函数的分析、归纳和总结能力之后,就可以在各类函数中熟练掌握相关解题方法.为了提高学生的归纳总结能力,教师可以列出下面三种不同函数,让学生自己找出定义域,做好解答.
引导学生探讨这三种函数的不同后,学生很快就会发现当自变量x在定义域内取相反的两个数时,对应函数值的关系,并利用解析式加以验证.由此概括出奇函数和偶函数的定义.通过这个过程培养了学生归纳综合的能力.为了帮助学生区别定义的不同,可以带领学生检验第(3)个函数,再根据x和-x和定义域的关系得出:“奇、偶函数的定义域关于原点对称.”为了帮助学生充分理解奇、偶函数的定义,可以向学生提问:当x∈[-1,1]和当x∈(-1,1]时,分别判断y=2x2,y=3x3的奇偶性.这样学生就可以通过验证得出“函数的定义域关于原点对称”是函数具有奇偶性的必要条件.这里,教师既教会了学生对概念的准确理解,又帮助学生提高了自主探索和分析归纳的学习能力.
高中生在学习函数时,觉得学习困难,成绩提高不了,这都源于高中函数的复杂性,只要教师帮助学生打好稳固的学习基础,在教学方法上注意分层教学,教会学生正确的学习方法,帮助学生培养发散性思维能力,更要注重学生自主探索的能力,在此基础上,学生能够增强学习函数的信心,早日攻克函数的难点,从而更好地学好函数.
【参考文献】
[1]陈图.高中数学函数[M].北京:首都师范大学出版社,2003.
[2]王琼.关系和函数[J].云南民族学院学报,2004(1).
[3]丁尔升.中学数学教材教法总论[M].北京:高等教育出版社,2008.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文
1掌握学生的学习基础,帮助他们树立信心
函数学习从高一开始,面对刚从初中升到高中的学生,学习基础都不一样,理解能力也有不同,教师要及时摸清学生的学习基础,为将要进行的函数教学做好准备,进入函数的教学时,要注意到学生的认知水平、接受能力各有不同这一现状,因材施教,分层教学,充分挖掘每名学生的学习潜力,激发他们的学习热情,引导学生在课堂认真听讲的同时,课后要多做练习、勤于思考,在学习的过程中由潜入深,由易入难,逐步培养他们对学习函数的兴趣,建立起学好函数的信心.例如在讲解函数表达式时,教师可以举出两个例子:
例1 已知:f(x+1)=x-5x+2,求f(x).
例2 已知:f(f(x))=9x+1,求一次函数f(x).
可以让学生思考:有几种解法?根据学生讨论的结果,教师能准确把握学生遇到的问题,再根据学生的疑惑去有针对性的解答,在这种自由宽松的课堂氛围中,教师和学生进行了成功的双向互动,一方面让教师及时掌握了备课时忽视的教学盲点,能够及时为学生答疑;另一方面又让学生进行了探究性学习,培养了学生独立思考的能力.
学生在面对求含参数的二次函数的最大值、最小值时,觉得很困难,容易产生退缩心理,认为自己不会就放弃了,教师在面对这种状况时,应该采用深入浅出的讲解,把题目设计成:
(1)求出下列函数在n∈[0,3]时的最大、最小值:①y=(n-1)2+1;②y=(n+1)2+1;③y=(n-2)2+1.
(2)求函数y=n2-2an+a2+a,n∈[0,3]时的最小值.
(3)求函数y=n2-2n+2,n∈[k,k+1]的最小值.
这种层层递进的方式可以帮助学生理解,让学生知道知识是如何一步步由简入难递进的,从而树立学习的信心,调动积极性.
2在教学中注意培养学生发散思维的能力
要想学好高中数学中的函数,要求学生必须具备丰富的想象力、创造力,才能达到对同一道题产生多种解题思路的效果.作为老师,有责任帮助学生培养发散性思维能力,实现举一反三、触类旁通的解题能力.而不少学生在之前的数学学习中容易形成思维定势,这种因循守旧的思维定势严重阻碍了学生在函数中的学习,要想帮助学生建立良好的发散性思维能力,教师必须首先去观察学生的原有思维框架,帮助学生打破旧有思维,树立独立思考,能熟练运用多种方式解题的能力,重建发散性思维模式.例如,学生在课外数学练习中碰到这种题目:求f(x),使f(x)满足f[f(x)]=x+2…(1),书里的答案是f(x)=x+1.出题者的目的在于,在暗含有“f(x)是一次函数”的题目中,能够通过一次函数的复合关系,达到对复合函数的基本认知.学生对此感到困惑,因为他们不明白“f(x)是一次函数”的这一条件,虽然老师寄予了提示,但是许多学生还是保持对这一条件的怀疑,在这种情况下,教师可以引导学生探求函数方程(1)的一个非线性解,探究能否构造一个满足以上假设的例子.根据f(x)的基本性质,可以得知,f(x)的定义域和值域是一切实数,如果有x1,x2能够使f(x1)=f(x2),那么f(f(x1))=f(f(x2));根据函数的复合满足结合律,便可以得出f(x+2)=f(x)+2…(2),所以,只要对满足0≤x≤2的实数x定义f(x),再按照(2)将f(x)的定义拓展到整个实数轴上便可得出以上推论.学生在这个解题过程中,不仅自己探索分析,而且在老师的指导下得出了正确的结论,学习的兴趣很快被调动起来,也达到了发散性思维的锻炼,有助于学生扩展思路,提高成绩.
3教会学生使用正确的学习方法
由于函数具有高度的抽象性和扩展性,这就要求在高中数学函数教学中,老师不仅要帮助学生打好基础,培养发散性思维能力,而且要教会学生使用正确的学习方法,具备了对函数的分析、归纳和总结能力之后,就可以在各类函数中熟练掌握相关解题方法.为了提高学生的归纳总结能力,教师可以列出下面三种不同函数,让学生自己找出定义域,做好解答.
引导学生探讨这三种函数的不同后,学生很快就会发现当自变量x在定义域内取相反的两个数时,对应函数值的关系,并利用解析式加以验证.由此概括出奇函数和偶函数的定义.通过这个过程培养了学生归纳综合的能力.为了帮助学生区别定义的不同,可以带领学生检验第(3)个函数,再根据x和-x和定义域的关系得出:“奇、偶函数的定义域关于原点对称.”为了帮助学生充分理解奇、偶函数的定义,可以向学生提问:当x∈[-1,1]和当x∈(-1,1]时,分别判断y=2x2,y=3x3的奇偶性.这样学生就可以通过验证得出“函数的定义域关于原点对称”是函数具有奇偶性的必要条件.这里,教师既教会了学生对概念的准确理解,又帮助学生提高了自主探索和分析归纳的学习能力.
高中生在学习函数时,觉得学习困难,成绩提高不了,这都源于高中函数的复杂性,只要教师帮助学生打好稳固的学习基础,在教学方法上注意分层教学,教会学生正确的学习方法,帮助学生培养发散性思维能力,更要注重学生自主探索的能力,在此基础上,学生能够增强学习函数的信心,早日攻克函数的难点,从而更好地学好函数.
【参考文献】
[1]陈图.高中数学函数[M].北京:首都师范大学出版社,2003.
[2]王琼.关系和函数[J].云南民族学院学报,2004(1).
[3]丁尔升.中学数学教材教法总论[M].北京:高等教育出版社,2008.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文