论文部分内容阅读
函数与方程思想是高考数学解题过程中常用的数学思想之一.函数描述的是自然界中变量与自变量之间的关系,函数思想的核心就是通过建立变量与自变量之间的数学模型,来解决实际问题.通过构造相关函数,运用函数的基本性质去分析问题和转化问题,从而使问题得到解决.方程的思想就是在对方程概念认识的基础上去分析数学问题中的变量之间的等量关系,从而能够运用方程的性质去解决问题.在高考试题之中,把函数与方程思想作为七种解题思想之一来重点考察.作者通过对最近的高考数学试题研究发现,从函数与方程的题目类型的角度出发,选择题和填空题通常考察函数与方程思想的基本运算;解答题通常从深层次以及高中数学网络知识点的交汇处,并与函数与方程相关能力结合的角度进行考察.下面作者就结合最近几年的高考数学试题,对函数与方程思想在高考题中的应用进行探讨.
一、函数与方程思想在实际教学过程中的应用
所以椭圆的右焦点(2,0).求解一下问题;(1)求出椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆之间有公共点,而且满足直线OA与L之间的垂直距离为4?如果存在求出直线L的方程,如果不存在,请说明理由.解析:本题主要考察的知识点是解析几何中有关直线、椭圆方程等方面的基础知识.主要解题核心就是利用函数与方程思想解决问题.对于第二个问题,可以通过设置参数m,设出直线L的方程,由于直线L与椭圆C之间有公共点,联立方程组求出m的取值范围,结果此范围并不能够满足题设条件:直线OA与L之间的垂直距离为4所求出的m值,从而得出本题结论:符合假设条件的直线L并不存在.在解析几何中,许多问题比如直线与二次曲线之间的关系问题,都必须要通过解答二元方程组才能解决,这些都涉及到二次方程与二次函数的相关理论.
二、小结
纵观近几年高考试题,有关函数与方程思想方法的考察一直是高考数学的重点内容之一.本文结合实际教学案例,对函数与方程思想在高考数学中的具体应用进行了相关分析.主要结合实际高考案例分析了函数与方程思想在方程的根与函数的零点、三角函数、数列三个方面的应用.分析出在解决此类问题的解决办法是:遇到变量通过构造函数关系解题,有关不等式、方程以及最值问题都应该根据函数的基本性质加以分析.所以在实际解题的过程中,平时要增强函数方程的解题意识,提高解题能力,适应高考新的要求.
[浙江师范大学附中金华二中 (321004)]
一、函数与方程思想在实际教学过程中的应用
所以椭圆的右焦点(2,0).求解一下问题;(1)求出椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆之间有公共点,而且满足直线OA与L之间的垂直距离为4?如果存在求出直线L的方程,如果不存在,请说明理由.解析:本题主要考察的知识点是解析几何中有关直线、椭圆方程等方面的基础知识.主要解题核心就是利用函数与方程思想解决问题.对于第二个问题,可以通过设置参数m,设出直线L的方程,由于直线L与椭圆C之间有公共点,联立方程组求出m的取值范围,结果此范围并不能够满足题设条件:直线OA与L之间的垂直距离为4所求出的m值,从而得出本题结论:符合假设条件的直线L并不存在.在解析几何中,许多问题比如直线与二次曲线之间的关系问题,都必须要通过解答二元方程组才能解决,这些都涉及到二次方程与二次函数的相关理论.
二、小结
纵观近几年高考试题,有关函数与方程思想方法的考察一直是高考数学的重点内容之一.本文结合实际教学案例,对函数与方程思想在高考数学中的具体应用进行了相关分析.主要结合实际高考案例分析了函数与方程思想在方程的根与函数的零点、三角函数、数列三个方面的应用.分析出在解决此类问题的解决办法是:遇到变量通过构造函数关系解题,有关不等式、方程以及最值问题都应该根据函数的基本性质加以分析.所以在实际解题的过程中,平时要增强函数方程的解题意识,提高解题能力,适应高考新的要求.
[浙江师范大学附中金华二中 (321004)]