论文部分内容阅读
针对机器学习算法在应用中存在的问题,构建基于智能启发算法的机器学习模型优化体系。首先,介绍已有智能启发算法类型及其建模过程。然后,从智能启发算法在机器学习算法中的应用,包括神经网络等参数结构优化、特征优化、集成约简、原型优化、加权投票集成和核函数学习等方面说明智能启发算法的优势。最后,结合实际需求展望智能启发算法及在机器学习领域的发展方向。