ROS系统的激光SLAM视觉智能勘察小车

来源 :计算机技术与发展 | 被引量 : 2次 | 上传用户:sniper0928
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对于目前常用的定位系统(例如GPS),在存在遮挡条件或者在室内执行任务时,往往会出现定位不准,无法识别区域位置等问题,这使得机器人在移动过程中无法正确地进行判断,很可能无法移动至目的地。针对移动机器人在未知环境下的定位不准,无法识别区域位置等问题,设计了一个ROS系统的激光SLAM视觉智能勘察小车,通过结合激光SLAM与深度摄像头,提升小车的数据采集能力,并结合ROS系统的图形化模拟环境,对智能小车的位置进行估计并构建地图,实现了小车的自主定位和导航。经测试,在室内或遮蔽环境下相比采用传统雷达SLA
其他文献
提出了一种信号处理方法——幅值恢复算法作为对定子电流信号进行快速傅里叶变换前的预处理,目的是为了分析除基波以外的谐波从而诊断电机的轻微故障。作为过滤器功能的幅值恢
车道线是行车安全的重要参考。为提高无人驾驶行车过程中车道线检测的准确性和实时性,提出一种基于改进概率霍夫变换的车道线快速检测方法。首先对获取的图像进行感兴趣区域提取,根据车道线颜色的特殊性,合理选取三色通道的比值对图片进行灰度化,为增强阈值处理的鲁棒性,采用大津二值化法对灰度图像进行二值化,由于Canny算子具有良好的定位边缘的能力,本次边缘提取算子选取为Canny。接着分别从车道线长度、角度、车
声纹识别技术实现的关键点在于从语音信号中提取语音特征参数,此参数具备表征说话人特征的能力。基于GMM-UBM模型,通过Matlab实现文本无关的声纹识别系统,对主流静态特征参数
压缩感知对于提高地震采集效率、降低地震采集成本、改善地震处理效果都有重要作用。在介绍和分析了海上压缩感知地震采集设计和评价的基本原理、实现方式以及降本增效意义的
随着经济的快速发展和城市扩张,交通量逐年增加,交通管理也变得复杂多样。针对隧道环境下高速行驶车辆的车牌识别问题,提出了一种车牌分割和识别的算法。算法分为四个部分:图像预处理,车牌定位,车牌分割和字符识别。采用选择更新法拦截行车辆视频进行关键帧处理;在车牌定位中选用边缘检测与形态学相结合的算法,以消除噪声干扰,提高定位准确率;又用阈值分割法进行字符分割,以解决投影分割法等传统算法出现的字符黏贴和汉字
随着网络技术的发展,实时通信成为互联网领域的研究热点,如远程监控技术。常见的实时通信技术基本是由客户端主动发起请求,服务器端被动接受响应,此方式缺乏灵活性。Websocke
5G的发展带来了终端设备爆炸式增长的现象,使得频谱资源紧缺的问题越加严峻,认知无线网(cognitive radio,CR)的提出,被认为是提高频谱利用率的有效途径。认知无线网,融合了当