论文部分内容阅读
Objective To assess the effect of atorvastatin on lipopolysaccharide(LPS)-induced TNF-α production in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated in different LPS concentrations or at different time points with or without atorvastatin. TNF-α level in supernatant was measured. Expressions of TNF-α mRNA and protein and heme oxygenase-1(HO-1) were detected by ELISA, PCR, and Western blot, respectively. HO activity was assayed. Results LPS significantly increased the TNF-α expression and secretion in a dose- and time-dependent manner. The HO-1 activity and HO-1 expression level were significantly higher after atorvastatin treatment than before atorvastatin treatment and attenuated by SB203580 and PD98059 but not by SP600125, suggesting that the ERK and p38 mitogen-activated protein kinase(MAPK) pathways participate in regulating the above-mentioned effects of atorvastatin. Moreover, the HO-1 activity suppressed by SnPP or the HO-1 expression inhibited by siRNA significantly attenuated the effect of atorvastatin on TNF-α expression and production in LPS-stimulated macrophages. Conclusion Atorvastatin can attenuate LPS-induced TNF-α expression and production by activating HO-1 via the ERK and p38 MAPK pathways, suggesting that atorvastatin can be used in treatment of inflammatory diseases such as sepsis, especially in those with atherosclerotic diseases.
Objective To assess the effect of atorvastatin on lipopolysaccharide (LPS) -induced TNF-α production in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated in different LPS concentrations or at different time points with or without atorvastatin. TNF-α level in Expressions of TNF-α mRNA and protein and heme oxygenase-1 (HO-1) were detected by ELISA, PCR, and Western blot, respectively. HO activity was assayed. Results LPS significantly increased the TNF-α expression and secretion in a dose- and time-dependent manner. The HO-1 activity and HO-1 expression level were significantly higher after atorvastatin treatment than before atorvastatin treatment and attenuated by SB203580 and PD98059 but not by SP600125, suggesting that the ERK and p38 mitogen -activated protein kinase (MAPK) pathways participate in regulating the above-mentioned effects of atorvastatin. Moreover, the HO-1 activity suppressed by SnPP or the HO-1 expression inhibited by siRNA signi ficantly attenuated the effect of atorvastatin on TNF-α expression and production in LPS-stimulated macrophages. Conclusion Atorvastatin can attenuate LPS-induced TNF-α expression and production by activating HO-1 via the ERK and p38 MAPK pathways, suggesting that atorvastatin can be used in treatment of inflammatory diseases such as sepsis, especially in those with atherosclerotic diseases.