论文部分内容阅读
技校进行数学教育的目的,不仅是帮助学生为学习专业课打基础,更重要的是培养学生的数学思维。将数学建模思想方法融入数学课程,这是技校数学教学改革的切入点,有助于提高技校生的数学素质,培养创新型人才。
数学建模教育的思想方法是:从若干实际问题出发,发现其中的规律,提出猜想,进行证明或论证。数学建模要求学生结合计算机技术,灵活运用数学的思想和方法,独立地分析和解决问题。它不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风。
一、技校教育开展数学建模的可行性与途径
对学生进行数学建模思想与方法的训练,有两种途径:第一是开设数学建模课。这个途径受时间限制,对于技校教育更是如此。由于学制短,分配给数学课程的时数较少,对于教学建模教学而言,是非常不够的。第二个途径是将数学建模的思想和方法有机地贯穿到传统的数学基础课程中,使学生在学习数学基础知识的同时,初步获得数学建模的知识和技能,为日后用所学知识解决实际问题打下基础。将数学建模的思想和方法融入技校数学教学中,是一种符合现代技校教育实际的一种教育方法,原因有以下两个方面:
1.数学应用广泛
数学区别于其他学科的明显特点之一,就是它的应用极其广泛,可以解决许多实际问题。许多模型,如银行存款利率的增加、人口增长率、细菌的繁殖速度、新产品的销售速度,甚至某些体育训练问题等,都可以用数学知识解决。所以,在技校教育现有的数学基础课的某些章节中插入数学建模内容,有非常丰富的资源。
2.技校教育注重实用性
注重实用性,不强调理论严谨性,使得学校和教师在进行数学教育的改革时,拥有较大的优势和灵活性。在技校数学基础课融入数学建模内容时,可以对原有的教学内容进行适当调整,如只讲专业课需要用到的内容,删除某些繁琐的推导过程和计算技巧等。对于大多数计算问题,包括求极限、求导数、求积分等,都可以用Mathematica、Matlab等数学软件直接在计算机上得出结果。这样,可以有效地解决增加数学建模内容而不增加课时的矛盾。
二、在教学中渗透数学建模思想的实践初探
高等数学中的函数、向量、导数、微分、积分都是数学模型,但教学中也要选择更现实、更具体,与自然科学或社会科学等领域关系直接的模型与问题。这样的题材能够更有说服力地揭示数学问题的起源、数学与现实世界的相互作用,体现数学科学的发展过程,激发学生参与探索的兴趣。
1.重视函数关系的应用
建立函数模型,在数学建模中非常重要,因为用数学方法解决实际问题的许多例子,首先都是建立目标函数,将实际问题转化为数学问题。所以,要重点介绍建立函数模型的一般方法,掌握现实问题中较为常用的函数模型。
2.重视导数的应用
利用一阶导数、二阶导数可求函数的极值,利用导数求函数曲线在某点的曲率,在解决实际问题中很有意义。在讲到这些章节时,适当向数学建模的题目深入,可以收到事半功倍的效果。例如,传染病传播的数学模型的建立,就用到了导数的数学意义(函数的变化率);经济学中的边际分析、弹性分析、征税问题的例子,都要用到导数。总之,在导数的应用这章中,适当多讲一些实际问题,能培养学生对数学的积极性。
3.充分重视定积分的应用
定积分在数学建模中应用广泛,因此,在定积分的应用这章中,微元法以及定积分在几何物理上的应用,都要重点讲授,并应尽可能讲一些数学建模的片段,巧妙地应用微元法建立积分式。
4.充分重视常微分方程的讲授
建立常微分方程,解常微分方程是建立数学模型解决实际问题的有力工具。为此,在数学课程教学中,要用更多的时间讲解如何在实际问题中提炼微分方程,并且求解。
三、渗透数学建模思想应注意的几个问题
首先,要循序渐进,由简单到复杂,逐步渗透。选择密切联系学生实际,易接受,且有趣、实用的数学建模内容。其次,在教学中列举数学建模实例,仅仅是学生学习数学建模方法和思想的初步。因此,在教学中举例宜少而精,忌大而泛,不能冲淡高等数学理论知识的学习。第三,教学中强调重视实际应用的同时,也要使学生认识到数学绝不仅仅是工具,要从所做的数学推导和所得到的数学结论中,指出所包含的更一般、更深刻的内在规律,指出从具体问题进一步抽象化、形式化,上升到一般规律性认识的必要性与可能性,使学生理解数学是如何源于现实而又高于现实的。
(作者单位:青岛市技师学院)
数学建模教育的思想方法是:从若干实际问题出发,发现其中的规律,提出猜想,进行证明或论证。数学建模要求学生结合计算机技术,灵活运用数学的思想和方法,独立地分析和解决问题。它不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风。
一、技校教育开展数学建模的可行性与途径
对学生进行数学建模思想与方法的训练,有两种途径:第一是开设数学建模课。这个途径受时间限制,对于技校教育更是如此。由于学制短,分配给数学课程的时数较少,对于教学建模教学而言,是非常不够的。第二个途径是将数学建模的思想和方法有机地贯穿到传统的数学基础课程中,使学生在学习数学基础知识的同时,初步获得数学建模的知识和技能,为日后用所学知识解决实际问题打下基础。将数学建模的思想和方法融入技校数学教学中,是一种符合现代技校教育实际的一种教育方法,原因有以下两个方面:
1.数学应用广泛
数学区别于其他学科的明显特点之一,就是它的应用极其广泛,可以解决许多实际问题。许多模型,如银行存款利率的增加、人口增长率、细菌的繁殖速度、新产品的销售速度,甚至某些体育训练问题等,都可以用数学知识解决。所以,在技校教育现有的数学基础课的某些章节中插入数学建模内容,有非常丰富的资源。
2.技校教育注重实用性
注重实用性,不强调理论严谨性,使得学校和教师在进行数学教育的改革时,拥有较大的优势和灵活性。在技校数学基础课融入数学建模内容时,可以对原有的教学内容进行适当调整,如只讲专业课需要用到的内容,删除某些繁琐的推导过程和计算技巧等。对于大多数计算问题,包括求极限、求导数、求积分等,都可以用Mathematica、Matlab等数学软件直接在计算机上得出结果。这样,可以有效地解决增加数学建模内容而不增加课时的矛盾。
二、在教学中渗透数学建模思想的实践初探
高等数学中的函数、向量、导数、微分、积分都是数学模型,但教学中也要选择更现实、更具体,与自然科学或社会科学等领域关系直接的模型与问题。这样的题材能够更有说服力地揭示数学问题的起源、数学与现实世界的相互作用,体现数学科学的发展过程,激发学生参与探索的兴趣。
1.重视函数关系的应用
建立函数模型,在数学建模中非常重要,因为用数学方法解决实际问题的许多例子,首先都是建立目标函数,将实际问题转化为数学问题。所以,要重点介绍建立函数模型的一般方法,掌握现实问题中较为常用的函数模型。
2.重视导数的应用
利用一阶导数、二阶导数可求函数的极值,利用导数求函数曲线在某点的曲率,在解决实际问题中很有意义。在讲到这些章节时,适当向数学建模的题目深入,可以收到事半功倍的效果。例如,传染病传播的数学模型的建立,就用到了导数的数学意义(函数的变化率);经济学中的边际分析、弹性分析、征税问题的例子,都要用到导数。总之,在导数的应用这章中,适当多讲一些实际问题,能培养学生对数学的积极性。
3.充分重视定积分的应用
定积分在数学建模中应用广泛,因此,在定积分的应用这章中,微元法以及定积分在几何物理上的应用,都要重点讲授,并应尽可能讲一些数学建模的片段,巧妙地应用微元法建立积分式。
4.充分重视常微分方程的讲授
建立常微分方程,解常微分方程是建立数学模型解决实际问题的有力工具。为此,在数学课程教学中,要用更多的时间讲解如何在实际问题中提炼微分方程,并且求解。
三、渗透数学建模思想应注意的几个问题
首先,要循序渐进,由简单到复杂,逐步渗透。选择密切联系学生实际,易接受,且有趣、实用的数学建模内容。其次,在教学中列举数学建模实例,仅仅是学生学习数学建模方法和思想的初步。因此,在教学中举例宜少而精,忌大而泛,不能冲淡高等数学理论知识的学习。第三,教学中强调重视实际应用的同时,也要使学生认识到数学绝不仅仅是工具,要从所做的数学推导和所得到的数学结论中,指出所包含的更一般、更深刻的内在规律,指出从具体问题进一步抽象化、形式化,上升到一般规律性认识的必要性与可能性,使学生理解数学是如何源于现实而又高于现实的。
(作者单位:青岛市技师学院)