论文部分内容阅读
对智能小区的居民用电行为展开研究,基于云计算平台和并行k-means聚类算法,建立了峰时耗电率、负荷率、谷电系数等时间序列特征,并采用熵权法计算各类特征权重,实验数据来自已建的智能小区中的600名用户。实验结果表明,智能小区的居民用户被分成空置房、上班族、上班族+老人、老人家庭、商业用户等5类用户,聚类的准确率达到了91.2%,证明文中基于云计算平台和并行k_means聚类算法的居民用电行为分析模型是有效的。