论文部分内容阅读
针对现有中文微博观点分类方法对上下文利用不足、数据表示稀疏和特征依赖于人工设计等问题,提出基于卷积神经网络的中文微博观点分类方法.首先利用交互上下文扩充不同主题下的微博内容,使用低维密集向量初始化微博文本.然后构造卷积神经网络模型,实现特征抽取和组合.最后基于softmax分类函数估计中文微博观点类别.实验表明,相比基准方法,文中方法在精确度和F1值上的效果更好.