How does climate change influence national stability

来源 :科学导报·学术 | 被引量 : 0次 | 上传用户:zy657592895zy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Abstract Recently, the impact of climate change on national stability has become increasingly significant. Therefore, many countries are exploring the relationship between climate change and national stability. An effective Fragile State Metric is crucial to study the relationship between them. To solve the issue, we formulate Fragile State Metric System (FSM) including three parts: indicator System Establishment, FSM model, and analysis of the indirect impact of climate change on national fragility.
  First, based on Fragile State Index, we establish FSM including evaluation system with two levels of indicators, fragility index model with more rational indicator weight, and quantitative analysis of the indirect Impact of climate change. Moreover, by using Principal Component Analysis and K-Means Clustering Method to establish fragility rating criteria, we find 2.5 is a tipping point from vulnerable to fragile. Second, considering the applicability of FSM, we test the system in the smaller and larger range. As a result, the effect is not ideal. Therefore, FSM is modified to achieve a wider range of applicability by stratifying the indicator system.
  Keywords: Fragile State Metric System (FSM), Principal Component Analysis, K-Means Clustering Method
  【中圖分类号】 F591 【文献标识码】 A【文章编号】 2236-1879(2017)24-0126-02
  1. Background
  Since the 20th century, the global climate is undergoing tremendous changes, and the effects of Climate Change are already being realized and vary from region to region. The effects affect the species distribution area, biological diversity and so on. However, the impact of climate change goes far beyond these, and will indirectly increase the vulnerability of nations by affecting other factors and indicators. Many of these effects will alter the way humans live, and may have the potential to cause the weakening and breakdown of social and governmental structures. Consequently, destabilized governments could result in fragile states.
  Our objective is to develop an evaluation system to measure each country’s ability to provide the basic essentials to its people. It is consistent with government stability, which is affected by cohesive, economic, political and social drivers. We try to find these drivers and provide the evaluation of human intervention’s effect for countries based on them.
  2. Notations
  In this section, we will begin by defining a list of the nomenclature used in this report:   3. Fragile State Metric System (FSM)
  3.1 Data Pre-processing。
  Collecting sufficient data is the basis of developing a complete index system. On the website of Fund for Peace, we found 12 indicators of 178 countries. Then, we searched the indicator data to measure climate change.
  Since the dimensions of the 12 indicators are different, the data can’t be directly compared. To normalize the data, we use K-Means Clustering Method to normalize the data. All data is converted to number between -1 and 1.Comparing these 12 indicators, the indexes can be classified as four types, such as cohesion-type index, economy-type index, policy-type index and society-type index. Consequently, we acquire standardized data of 12 indicators, represented by.
  3.2 Indicator System Establishment。
  Indicators are selected to measure state fragility according to Fragile State Index. We divide the 12 indicators to 4 types, such as cohesion-type index, economy-type index, policy-type index and society-type index:
  Cohesion includes security, factionalized elites, and group grievance.
  Economy includes economic decline, uneven economic development, and human flight and brain drain.
  Policy includes state legitimacy, public services, and human rights and rule of law.
  Society includes demographic pressure, refugees and IDPs, and external intervention.
  3.3 FSM Model Building through PCA。
  3.3.1 FSM Building。
  Step Ⅰ: We apply Principal Component Analysis to the above 12 indicators on the use of SPSS [1]. Then, we choose the eigenvalue greater than 1 as the principal components. Thus, we acquire Component 1 and Component 2:
  The eigenvalue of principal component 1 is 8.708, accounting for 72.567% of the total variance.
  The principal component 2 has a characteristic value of 1.126, accounting for 9.383% of the total variance.
  Component 1 and component 2 cumulatively explain the total variance of 81.985%.
  Step Ⅱ:We get the composition matrix of those two principal components and the 12 indicators by SPSS. Then, we can calculate various weights for each indicator respectively for the principal component 1 and principal component 2, represented by w1i and w2i symbols.
  Step Ⅲ:Through cumulative sum of the standardized data for various indicators and the corresponding weights, respectively, we get score for principal component 1 and principal component 2. Fi (i=1, 2) symbol represent score for each principal component. Since the 12 indicators data for each country are different, the F1 and F2 will vary from state to state.   From Table 2, we can see that the two principal components explain the total variance differently. We determine the weight of the two principal components in the total score by the degree of interpretation. Afterwards, the model of the FSM can be obtained. When we apply indicator data to our formula above, we find coefficient of component is equal to 72.567/81.950, and component 2 is 9.383/81.950. Finally, we get our Fragile State Metric Model.
  3.3.2 FSM Scoring System。
  We use MATLAB software to classify 78 countries according to the K-Means clustering method [2]. Then, we acquire the following state fragility assessment system.
  3.4 Indirect Impact of Quantitative Analysis。
  In Section 3.2, we have qualitatively described climate changes indirectly increase the vulnerability of nations by affecting those 12 indicators. In order to illustrate this indirect effect more clearly, we quantify the impact of climate change on the 12 indicators. Since the relationship between climate change indicators and the 12 indicators is often nonlinear, we want to perform the curve fitting to explore the relationship. To simplify the problem, we use some other indicators to act as the substitutes of those 12 indicators. The substitutes include GDP per capita, access to electricity, inflation and other more simplified indicators, which also reflect the four factor types.
  4. Model Improvement
  Since our FSM model is obtained by applying principal component analysis to the index system, the rationality of the index system is crucial to the adaptability of the model. Our model will not work well on smaller “states” (such as cities) or larger “states” (such as continents), as the index system is not adaptable. Some indicators used in smaller states are clearly too broad and not specific. Meanwhile, the use of these indicators in larger states is far from enough to measure his situation.
  In order to solve the above issues, we will solve the problem of adaptability by stratifying the indicator system. We amend the original 12 indicators of the system to establish a new system. We divide it into three tiers and take two more significant indicators for the smaller “state” for each type of factor; for the state, we take three indicators for each type of factor; for the larger “state”, four representative indicators for each type of factor [3].
  References
  [1] [1]Mishra, Puneet, et al. Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. Journal of Near Infrared Spectroscopy 23.1(2015):15-22.
  [2] Wei-Xiang XU, Quanshou Zhang, An Algorithm of Meta-Synthesis Based on the Grey Theory and Fuzzy Mathematics [J].,Systems engineering theory and practice, 2001
  [3] Chen J, Yang J, Zhao J, et al. Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method[J]. Neurocomputing, 2016, 174(PB):1087-1100.
其他文献
摘 要: 在我国现代化的发展过程中,农业与畜牧业是密切相关的两个产业。要想促进畜牧业的发展,就应该重视其发展情况,这样才能够对一个地区或者是一个国家的发展水平具有更加深刻的认知。同时,还能够促进人们生活质量的提升。当前,我国畜牧业呈现出蓬勃向上的生机,所以要想将这一发展趋势继续的保持下去,就需要进一步加强人才与技术方面的支持,只有不断培养出具有高素质的技术型人才,也就是畜牧兽医,才能够让我国现代畜
期刊
摘 要: 利用现实生活中的语文教育资源,优化语文学习环境,引导学生开展丰富多彩的语文实践活动是小学语文综合性学习的主要目标。  关键词: 实践;合作;探究  【中图分类号】 G622.4 【文献标识码】 A【文章编号】 2236-1879(2017)24-0173-01  听、说、读、写能力的整体发展、语文课程与其他课程的沟通、书本学习与实践活动的紧密结合,是语文综合性学习主要特点。人教版实验教材
期刊
摘 要: 随我国加入WTO以来农产品贸易的快速发展,为防止国外有害生物的“入境”,促进我国农业发展与产品出口,本文从多角度探讨如何强化植物检疫监管。  中国关键词: 新形势;植物检疫;有害生物  【中图分类号】 S41-3 【文献标识码】 A【文章编号】 2236-1879(2017)24-0172-01  植物检疫是通过法律、行政和技术的手段,防止危险性植物、病虫、杂草和其他有害生物的人为传播,
期刊
摘 要: 本文结合自己近年来的一些工作体会,通过对农村动物防疫工作中存在的一些问题进行了简要的分析,阐述了加强农村动物防疫工作,有效预防和控制动物疫病,不仅是畜牧业健康发展的重要手段和重要保障,还是维护食品安全、畜产品贸易和人类健康的需要,是加快畜牧业发展的前提条件,也是保护和增进人类健康及财产安全的重要措施。  中国关键词: 农村;兽医;防疫工作;现状分析  【中图分类号】 S851.33 【文
期刊
摘 要: 行政事业单位与全体人民有关,并承担一定的责任,其致力于公民整体目标的实现,而不是为了实现某一特定阶层或部分群众的目标。在行政事业单位活动当中,不论哪一类型活动,都是为了实现公民整体目标而开展的。鉴于此,本文对行政事业单位内部控制的建设进行了分析探讨,仅供参考。  关键词: 行政事业单位;内部控制;建设  【中图分类号】 F270 【文献标识码】 A【文章编号】 2236-1879(201
期刊
摘 要: 改革开放以来,我国建筑行业得到高速发展,但由于建筑施工安全事故不断,建筑施工安全风险也引起了全社会、全行业和所有建筑施工企业的高度重视。本文作者结合自己多年的工作经验,分析了我国建筑行业现场施工中安全管理的必要性和重要性。介绍了建筑施工现场安全风险管理的五种措施。以供读者参考。  关键词: 建筑施工;管理;措施  【中图分类号】 TU714 【文献标识码】 A【文章编号】 2236-18
期刊
摘 要: 在Olshiain和Weinbach(1987)的 5个抱怨递进的等级的基础上,通过分析从淘宝网和亚马逊网的消费者购物后的差评中收集的数据,本文提出了消费者网络抱怨的三种策略。通过对两组语料的定性和定量分析后发现:中美消费者在网上差评中实施的策略和语言的运用无显著差异,双方都倾向使用明显的抱怨策略;使用的激化语多于缓和语。  关键词: 中美;差评;网上购物;抱怨  【中图分类号】 F72
期刊
摘 要: 目的 探讨男护生职业心态与职业认同感。方法 选取2014年7月~2017年7月于广西科技大学附属医院实习的50名男护生作为研究对象,通过发放调查问卷的方式,了解男护生对于护理职业的心态和认同感。结果 男护生职业认同感普遍较低,可能是和性别、社会、学历、自身等因素有关。 结论 男护生应加强自身综合素质的提高,学校应加强男护生职业价值观教育,社会应强化男护生的就业优势。  关键词: 男护生;
期刊
摘 要: 基于产品内分工理论的视角,在分工促进审计成本降低的基础上,提出了政府审计内分工的概念。并以政府审计内分工为基础,建立了一个提高审计效率的理论架构,进一步用这个理论架构来分析政府审计内分工和审计效率的关系。本文的分析表明,在不同的审计环节设置相应的职能部门,在不同的审计阶段建立不同的审计目标,形成以审计程序、审计环节和审计目标为对象的分工体系,可以解决权力集中、目标不明确、审计成本高三方面
期刊
摘 要: 板栗种子从收获至播种前需经过较长的贮藏阶段,贮藏的根本目的在于保持种子高活力,保护种子良好的播种质量。板栗种子贮藏的任务就是采用合理的贮藏设备和先进科学的贮藏技术人为地控制贮藏条件,将种子质量的变化降到最低限度,有效保持其旺盛的发芽力和活力,从而确保播种价值。  关键词: 板栗;种子;贮藏技术;沙藏;冷藏  【中图分类号】 S379 【文献标识码】 A【文章编号】 2236-1879(2
期刊