论文部分内容阅读
针对玉米叶部病害图像的颜色、纹理、形状特征对病害影响的差异性,提出一种结合单特征下的SVM识别准确率和识别结果的融合多特征玉米病害识别方法。首先对预处理后的玉米病害图片提取颜色、纹理、形状3种特征,对应每一种特征构建一个SVM分类器,结合3个SVM分类器的平均准确率和识别结果作为证据理论的3个证据,构建D-S证据理论的基本概率分配函数(BPA),最后根据D-S证据理论决策规则进行决策级融合,依据决策条件输出最终识别结果。结果表明,结合SVM识别准确率和识别结果来对玉米的灰斑病、弯孢菌叶斑病、锈病三种