论文部分内容阅读
现有的粒子滤波故障预报方法主要是通过粒子滤波算法得到对应时刻的预测值,然后比较预测序列与观测序列的距离来对故障进行预报,但这种基于相同长度时间序列的故障预报方法不能处理预测序列与观测序列长度不同的情况.本文借助适用于不同长度时间序列的动态时间弯曲技术,对故障相关的时间序列进行分析,从动态时间弯曲算法度量设备正常工作的时间序列与潜在故障引起的异常序列之间相似度的角度,设计了系统正常度及反常度来判别设备是否正常运行,进而对潜在故障进行预报.实验结果验证了该方法的可行性,并能及时准确地预报出系统故障.