论文部分内容阅读
鉴于传统的多向主元分析(MPCA)难以保证在线状态监测和故障诊断的实时性,提出了一种基于特征子空间的滑动窗主元分析(CSMWPCA)故障监测与诊断方法。在实时故障监测与诊断时,该方法采用适当大小的滑动窗逐步更新当前子数据空间,对当前子数据空间故障的识别通过依次计算其与基底库中各故障的匹配度来进行,克服了传统的MPCA不能处理非线性过程和实时性问题。与一种新的移动窗多向主元分析(MWMPCA)方法相比,CSMWPCA方法能更有效地识别故障发生的原因。