论文部分内容阅读
本文研究Burgers方程高阶紧致有限体积方法.基于Hopf-Cole变换,非线性Burgers方程转化为线性热传导方程.继而利用四阶紧致有限体积方法,进行空间离散.时间离散采用四阶Runge-Kutta格式,然后利用Fourier分析方法,进行空间的误差分析和时间离散的稳定性分析.典型算例显示出本方法的高精度与良好的计算效果.