论文部分内容阅读
针对传统BP神经网络容易陷入局部极小、收敛速度慢和确定隐含层的神经元个数比较困难等缺点,从结构和算法两方面对BP神经网络进行改进。改进后的网络具有较快的收敛速度和较短的运行时间,加强了BP神经网络的学习能力和自适应能力,并将其应用于物体的分类识别,取得了良好的效果。仿真结果表明了此改进方法的可行性和有效性。