论文部分内容阅读
摘 要:分类讨论在高中数学解题过程中发挥着重要作用,既能帮助高中生建立正确的数学逻辑思维,提高解答问题的能力,提升做题的正确率,也能在分类讨论思想的拓展下,提高自身的综合能力,全面提升学科能力。因此,教师在实际解题教学过程中,还应继续深化和渗透分类讨论的数学思想,使学生能够更加深刻地理解和灵活地运用该思想。
关键词:分类讨论;高中数学;解题教学
一、 理解高中数学分类讨论思想的概念与重要性
(一) 掌握分类讨论的理论基础
在高中数学中,分类讨论常被应用在各种计算题、解答题中,因为数学问题中需要考虑很多约束条件,因此需要针对每个可能的情况分别分开进行讨论。分类讨论这類解题思路的重要性,常在高中数学教学中被屡屡提及,然而什么是分类讨论?它的解题思路是什么?如何在解题中使用?等等,这都离不开教师在平日的教学中进行详细的讲解与渗透,只有在透彻地掌握此类方法之后,学生的解题能力才能真正地提高。教师要重视理论实际相结合,帮助学生认识到什么是分类讨论,为什么要分类讨论,怎么分类讨论,并通过选择典型的例题来将分类讨论的思想在实际中加以应用,加深学生对概念和方法的理解。
(二) 提升高中阶段的解题能力
高中数学解题中分类讨论思想的应用,一方面可以提高学生的做题能力,理清题目中的数学关系,帮助学生更好地理解和掌握题目中的数学思想,另一方面能够提高教学水平,降低课堂上学生的学习难度。在高中数学的教学中,老师们使用分类讨论思想的教学模式,可以引导学生们更好地分析和讨论在解题时遇到的困惑和难题,并且还能跟随老师的指引在实际解题的操作过程中,形成自己独特的分类讨论思想的思维模式,这样一来,在以后的答题过程中,就算再遇到类似的问题也能迎刃而解了。但是这必须建立在学生已经基本掌握了分类讨论思想的基础上,否则学生在操作中还是会遇到分类不清楚、分类不规范以及分类的标准和对象不正确等一系列问题。这就需要加强对学生解题能力的训练,通过对学生的测验来对学生的能力进行摸底,重视理论和实践的结合。
二、 提升高中学生利用分类讨论思想的解题能力
(一) 全面讨论,层次分类
分类讨论的基本思想是从题目中找到给出的已知条件和数学关系,进而对要求解的数学问题进行一步一步的分析,讨论时要理清每一条数学思路,要充分地考虑到可能存在的任何问题,避免出现遗漏。教师在给学生传授分类讨论思想时,要将相关的概念、数学关系解释清楚,避免学生在学习上出现歧义,这样才能够确保在具体的解题过程中做到充分、全面。
【例1】 存在函数y=x2-2x,x在[-2,a]之中,求函数的最小值。
解析:在求解二次函数时需要借助求解方法进行求解,然后对解出来的未知数进行分析,看得到的值是否在给出的区间内。教师要适时地提出类似以下的问题:有哪些是不确定的?有几种情况?分类的标准是什么?在此题中求解最小值时,首先要根据二次函数的性质,找到该函数的对称直线x=1,判断该直线有没有在[-2,a]中,这时再对a值的范围进行分类讨论,从而求解答出正确的结果。在分析讨论过程中,首先要根据题目给出的数学关系列出方程组进行求解。求解过程中要根据解题思路有序地进行分类讨论,既不要遗漏任何一个条件,也不要重复多次的对相同问题进行讨论,避免最后的解答出错。只要方法应用得当,自然能够求解得到正确答案。
(二) 掌握定理,正确分类
高中数学中有很多公式、定理都与分类讨论相关,很多的公式或者定理它都受一些条件约束,这就使得在运用这类公式或者定理时需要进行分别讨论,从而得到正确的求解结果。
【例2】 存在二次函数y=(a-1)xb 1 x2 1,试求a和b的取值范围。
解析:解这道题时主要是根据二次函数的性质定理来进行相应的分类讨论,因为y=(a-1)xb 1 x2 1是二次函数,那么x的指数明显不能超过2,据此(b 1)的值就可以分成三种情况:b 1=1或b 1=0或b 1=2,根据这三个等式来判定b的取值,对于这类b值的求解就用到了分类讨论的思想。再比如,求解等比数列的前n项和时,首先需要讨论q=1和q≠1两种情况,并在解题过程中进行相应的说明,再根据题意求解出正确的结果。
这些类似的数学题目都在向我们展示了,即便是数学中的定理或者是公式,它都应用到了分类谈论的思想。此外,有一些数学定理和公式在定义的时候所要求的范围已经有了限制,对于这种前提也需要使用分类讨论的思想,这点教师在教学中需要注意。
(三) 合作学习,深化讨论
分类讨论在数学问题中无处不在,在很多时候它往往会具有迷惑性,这给学生在解题过程中造成误解,如何更好地学习分类讨论的方法,小组合作是再好不过的学习途径之一。小组合作学习能够弥补个人思想上的不足,充分地发挥集体的优势,通过大家交换各自的意见来将数学中的问题化繁为简,从而求解出正确的答案。
在分类讨论的教学中,小组合作的活动形式可以是多样的。比如像在课堂上,老师预留出部分时间给学生对学过的知识进行总结和讨论,并将分类思想延伸到方程、不等式等数学求解上的应用;再就是对平时大家的易错题或者教材中的典型例题来与学生进行分析和讨论,重视对知识点的把握,防止今后遇到类似的问题时再出错;还有就是将数学中的公式、定理汇聚在一起进行分类讨论与归类,帮助学生更好地理解和把握知识点,能够起到举一反三的作用。分类讨论并不仅仅应用在单一的求解过程中,它包含在数学中的任何方面,可以说是无处不在,而小组学习的方式能够引导学生主动去认识和分析数学中出现的问题,促进对教材中知识概念的把握,从而能够更快地进步和不断地提升个人学习能力。
三、 结束语
综上所述,在高中数学解题中应用分类讨论思想是非常科学与明智的。分类讨论思想不仅能使学生掌握解题的技巧与技能,还能使学生的逻辑推理能力得到加强。因此老师要在教学的过程中加强对学生这一方面的引导,从而让学生拥有严谨、缜密的思维,增强解决实际问题的水平和能力。
参考文献:
[1]罗涛.分类讨论思想在高中数学解题中的应用[J].杂文月刊:教育世界,2014,(22):195.
关键词:分类讨论;高中数学;解题教学
一、 理解高中数学分类讨论思想的概念与重要性
(一) 掌握分类讨论的理论基础
在高中数学中,分类讨论常被应用在各种计算题、解答题中,因为数学问题中需要考虑很多约束条件,因此需要针对每个可能的情况分别分开进行讨论。分类讨论这類解题思路的重要性,常在高中数学教学中被屡屡提及,然而什么是分类讨论?它的解题思路是什么?如何在解题中使用?等等,这都离不开教师在平日的教学中进行详细的讲解与渗透,只有在透彻地掌握此类方法之后,学生的解题能力才能真正地提高。教师要重视理论实际相结合,帮助学生认识到什么是分类讨论,为什么要分类讨论,怎么分类讨论,并通过选择典型的例题来将分类讨论的思想在实际中加以应用,加深学生对概念和方法的理解。
(二) 提升高中阶段的解题能力
高中数学解题中分类讨论思想的应用,一方面可以提高学生的做题能力,理清题目中的数学关系,帮助学生更好地理解和掌握题目中的数学思想,另一方面能够提高教学水平,降低课堂上学生的学习难度。在高中数学的教学中,老师们使用分类讨论思想的教学模式,可以引导学生们更好地分析和讨论在解题时遇到的困惑和难题,并且还能跟随老师的指引在实际解题的操作过程中,形成自己独特的分类讨论思想的思维模式,这样一来,在以后的答题过程中,就算再遇到类似的问题也能迎刃而解了。但是这必须建立在学生已经基本掌握了分类讨论思想的基础上,否则学生在操作中还是会遇到分类不清楚、分类不规范以及分类的标准和对象不正确等一系列问题。这就需要加强对学生解题能力的训练,通过对学生的测验来对学生的能力进行摸底,重视理论和实践的结合。
二、 提升高中学生利用分类讨论思想的解题能力
(一) 全面讨论,层次分类
分类讨论的基本思想是从题目中找到给出的已知条件和数学关系,进而对要求解的数学问题进行一步一步的分析,讨论时要理清每一条数学思路,要充分地考虑到可能存在的任何问题,避免出现遗漏。教师在给学生传授分类讨论思想时,要将相关的概念、数学关系解释清楚,避免学生在学习上出现歧义,这样才能够确保在具体的解题过程中做到充分、全面。
【例1】 存在函数y=x2-2x,x在[-2,a]之中,求函数的最小值。
解析:在求解二次函数时需要借助求解方法进行求解,然后对解出来的未知数进行分析,看得到的值是否在给出的区间内。教师要适时地提出类似以下的问题:有哪些是不确定的?有几种情况?分类的标准是什么?在此题中求解最小值时,首先要根据二次函数的性质,找到该函数的对称直线x=1,判断该直线有没有在[-2,a]中,这时再对a值的范围进行分类讨论,从而求解答出正确的结果。在分析讨论过程中,首先要根据题目给出的数学关系列出方程组进行求解。求解过程中要根据解题思路有序地进行分类讨论,既不要遗漏任何一个条件,也不要重复多次的对相同问题进行讨论,避免最后的解答出错。只要方法应用得当,自然能够求解得到正确答案。
(二) 掌握定理,正确分类
高中数学中有很多公式、定理都与分类讨论相关,很多的公式或者定理它都受一些条件约束,这就使得在运用这类公式或者定理时需要进行分别讨论,从而得到正确的求解结果。
【例2】 存在二次函数y=(a-1)xb 1 x2 1,试求a和b的取值范围。
解析:解这道题时主要是根据二次函数的性质定理来进行相应的分类讨论,因为y=(a-1)xb 1 x2 1是二次函数,那么x的指数明显不能超过2,据此(b 1)的值就可以分成三种情况:b 1=1或b 1=0或b 1=2,根据这三个等式来判定b的取值,对于这类b值的求解就用到了分类讨论的思想。再比如,求解等比数列的前n项和时,首先需要讨论q=1和q≠1两种情况,并在解题过程中进行相应的说明,再根据题意求解出正确的结果。
这些类似的数学题目都在向我们展示了,即便是数学中的定理或者是公式,它都应用到了分类谈论的思想。此外,有一些数学定理和公式在定义的时候所要求的范围已经有了限制,对于这种前提也需要使用分类讨论的思想,这点教师在教学中需要注意。
(三) 合作学习,深化讨论
分类讨论在数学问题中无处不在,在很多时候它往往会具有迷惑性,这给学生在解题过程中造成误解,如何更好地学习分类讨论的方法,小组合作是再好不过的学习途径之一。小组合作学习能够弥补个人思想上的不足,充分地发挥集体的优势,通过大家交换各自的意见来将数学中的问题化繁为简,从而求解出正确的答案。
在分类讨论的教学中,小组合作的活动形式可以是多样的。比如像在课堂上,老师预留出部分时间给学生对学过的知识进行总结和讨论,并将分类思想延伸到方程、不等式等数学求解上的应用;再就是对平时大家的易错题或者教材中的典型例题来与学生进行分析和讨论,重视对知识点的把握,防止今后遇到类似的问题时再出错;还有就是将数学中的公式、定理汇聚在一起进行分类讨论与归类,帮助学生更好地理解和把握知识点,能够起到举一反三的作用。分类讨论并不仅仅应用在单一的求解过程中,它包含在数学中的任何方面,可以说是无处不在,而小组学习的方式能够引导学生主动去认识和分析数学中出现的问题,促进对教材中知识概念的把握,从而能够更快地进步和不断地提升个人学习能力。
三、 结束语
综上所述,在高中数学解题中应用分类讨论思想是非常科学与明智的。分类讨论思想不仅能使学生掌握解题的技巧与技能,还能使学生的逻辑推理能力得到加强。因此老师要在教学的过程中加强对学生这一方面的引导,从而让学生拥有严谨、缜密的思维,增强解决实际问题的水平和能力。
参考文献:
[1]罗涛.分类讨论思想在高中数学解题中的应用[J].杂文月刊:教育世界,2014,(22):195.