A-Browder定理相关论文
本文首先刻画了算子具有一致可逆性质的条件.然后,利用一致可逆性质定义了一个新谱集,通过该谱与其它谱集之间的关系给出了算子满......
谱理论是算子理论算子代数中的一个重要分支,它与其他学科有着密切的联系,在物理学、量子力学等学科中的应用非常广泛.谱理论中的W......
算子谱理论一直是算子理论研究的热点问题,尤其是近几十年,随着科技的迅猛发展,算子谱理论在量子信息学,量子力学、物理学及其他交......
文章重点研究了Weyl型定理中的a-Browder定理,通过借助新的谱集,给出了有界线性算子及其函数满足a-Browder定理的充要条件.......
期刊
该文主要的目的是研究有界线性算子的Weyl型定理.文章的内容有两部分,一部分内容讨论了单个有界线性算子的Weyl型定理和广义Weyl型......
若T或T*是无穷维可分的Hilbert空间H上的代数k-拟-A类算子,则Weyl定理对任意的f∈H(σ(T))成立,其中H(σ(T))为σ(T)的开邻域上解......
称算子T满足a-Browder定理,若σa(T)/σea(T)■π00a(T),其中σa(T)和σea(T)分别表示算子T的逼近点谱和本质逼近点谱,和π00a(T)={λ∈isoσa(T),......
考虑Weyl型定理中的A-Browder定理和A-Weyl定理,利用拓扑一致降标法得到了:对任意的C∈B(H),算子M_C满足A-Browder定理和A-Weyl定理微......
若T或T^*是无穷维可分的Hilbert空间H上的代数κ-拟-A类算子,则Weyl定理对任意的f∈H(σ(T))成立,其中H(σ(T))为σ(T)的开邻域上解析函数的全......
A∈B(H)称为是一个Drazin可逆的算子,若A有有限的升标和降标,用σD(A)={λ∈C:A-λI不是Drazin可逆的}表示Drazin谱集,本文证明了对于Hilb......
称Hilbert空间算子T∈B(H)满足a-Browder定理,如果σa(T)/σaw(T)=π00~a(T),其中σa(T)和σaw(T)分别表示逼近点谱和Weyl本性逼近点谱,π00~a......