态射相关论文
效应代数的概念是由美国数学家Foulis和Bennett于1994年引入的一种代数结构.效应代数通常研究的是量子逻辑中的内容,比如正交模格......
EQ-代数是高阶模糊逻辑对应的真值代数结构,BCI-代数是组合逻辑中BCI-系统的代数表述,伪BCI-代数是BCI-代数的非可换推广.本文分别......
本文研究了环上矩阵的加权Moore - Penrose逆,矩阵的加权Γ逆,态射的加权Moore - Penrose逆,态射的加权(i , , j )逆,具有核的态射的......
Moore-Penrose逆和Drazin逆是两类经典广义逆,在诸多领域中发挥着重要的作用.随着研究的深入,学者们引入了许多新型广义逆,如核逆......
广义逆可以分为经典广义逆和新型广义逆.经典广义逆有Moore-Penrose逆以及Drazin逆(Drazin指标为1时称为群逆),这两类广义逆在许多领......
通常的Green关系,*-Green关系被推广为ρ-Green关系并研究了半超富足半群的半格分解。...
在这份报纸,我们用明确的公式给谎言 2 代数学的推导的观点,并且构造联系推导谎言 3 代数学。我们证明谎言 2 代数学的 non-abelian ......
泛型程序设计思想是软件重用技术中重要的思想,近年来这个思想受到广泛的重视并发展很快,为了更有效地保证泛型程序设计的正确性,本文......
给出了范畴中具有泛分解态射的广义(i,...,j)逆存在的一些充要条件,证明了态射的广义Moore-Penrose逆的充要条件及其表达式, 推广......
调和态射研究的一颗星在广西民族学院数学系教学楼一层的办公室里,记者见到了采访对象欧业林教授。30多岁,中等个头,脸庞稍瘦,典......
该文给出了预加范畴中具有泛分解的态射的(1,…,i)-逆存在的条件及其表达式,特别地,得到了这类态射的Moore-Penrose逆和群逆存在的......
学位
有限域上的置换多项式有很久的历史.早在十八世纪人们就开始研究它们了.对一个有限域F来说,它上面的一元置换多项式的定义是很显然......
取G=S4,P为S4的一个Sylow-2-子群,则FP(G)为一个fusion system.在本文中,我们提出了有关fusion system的研究现状,掌握了fusion system......
本文给出了预加范畴中具有泛分解的态射的(1,...,i)-逆存在的条件及其表达式.特别地,得到了这类态射的Moore-Penrose逆和群逆存在的......
对带有对合“*”的范畴C中态射φ的关于可逆态射h,k的广义Moore-Penrose逆φ+hk作了研究,给出了它存在的几个等价条件和若干刻划.......
期刊
研究了范畴中态射f关于态射β和γ的加权Moore-Penrose逆fβ+,γ,分别给出了一般态射、有满单分解态射与有核(上核)的fβ+,γ存在......
本文研究了范畴£中具有泛分解态射f=pgq关于对称态射β,γ的加权Moore-Penrose逆,并给出了其存在的充要条件及其表达式.......
给出了预加法范畴中具有泛分解态射的加权Moore-Penrose逆存在的充要条件及其表达式,推广了具有泛分解的态射的Moore-Penrose逆的......
在文「9,10」基础上,本文给出了带有对合范畴中态射集的左(右)星序的一些性质,因而较完满地将「4」中复矩阵星充的相应结果推广到范畴中。......
研究了预加法范畴中态射的(1,…,i)-逆,给出了态射三乘积βα′γ的不变性的充要条件,其中α′是态射α的(1)-逆或者(1,2)-逆。......
研究了预加范畴中具有广义分解的态射的广义Moore—Penrose逆,并给出了广义Moore—Penrose逆存在的充要条件及其表达式.......
论文探讨从集合与双射、结构与态射、范畴与函子到λ演算与相等映射的共同思想与规律....
研究了范畴C中有满单分解态射φ关于态射h,k的加权Moore-Penrose逆φhk^+的存在性问题,给出了φhk^+存在的几个充分必要条件,推广了态射......
研究了一般模丛之间的正合关系,讨论了一些特殊的投射丛上正合的可裂性.特别地,对原有关于矢量丛的正合条件适当改变后,使定理的实......
本文推广范畴上态射集中的星序理论.引进范畴上态射集中的加权星序.利用态射集的加权广义逆来刻划态射集中的加权星序.给出了态射集中......
本文研究了带有对合自反变函子σ范畴中具有单满分解条件的态射广义逆问题,得到了f有σ-广义逆的充要条件及相应的几个等价命题,推广了......
通过讨论由短正合列及它们之间的态射构成的范畴CRM的相关性质[1~4],合理地定义了CRM中的同态核、象、正合列、复形、投射分解等概......
本文给出预加范畴中具泛分解和广义分解的态射的广义Moore-Penrose逆存在的条件及其表达式,推广了具泛分解态射的Moore-Penrose逆......
在文「1」-「5」的基础上,本文给出了带对合范畴中态射的(1,…,i)--逆的定义一步得到了具有三重分解的态射f(1,2,)、f(1,2,4)的具体表达式。......
研究态射广义Moore-Penrose逆的倒换顺序律, 利用态射广义Moore-Penrose逆的性质给出了态射广义Moore-Penrose逆的倒换顺序律成立......
本文在Abel范畴中讨论了态射α,β的积αβ的性质。作为应用的例子,利用这些性质证明了以域上矩阵为态射的范畴中矩阵乘积的秩的恒等式。......
本文定义了态射的广义Moore-Penrose逆,给出了它存在的一些充要条件,确定了它的一些表达式,推广了关于态射的Moore-Penrose逆的相应结果。......
本文研究了加法范畴上态射的Drazin逆.首先给出了态射和()+η与态射有Drazin逆的一个关系,得到了()+η的Drazin逆的一个公式,其次......
本文以态射偶的等化子为工具研究态射的广义逆,对于态射f,给出了g为f^-,f^D和f^+的充要条件,并在矩阵范畴中建立了齐次线性方程组解与......
本文研究范畴中态射的广义(i,…,j)逆,利用态射广义分解的性质给出了态射广义(i,…,j)逆存在的一些充要条件,导出了态射的广义Moor......
本文研究了态射的广义Moore-Penrose逆,给出了范畴中态射的广义Moore-Penrose逆存在的一些新的充要条件,也给出了广义Moore-Penros......
分析了传统计算模型处理不确定性问题的局限性,并应用范畴理论建立形式语言的范畴计算模型,以双函子为工具深入研究了字范畴模型与......
证明了如下结果:设C是一个带有对合"*"及正性条件的正则预加性范畴,若{f-}={g-},则f=g....
研究范畴中态射的加权Moore-Penrose逆,利用态射广义分解的性质给出了态射加权Moore-Penrose逆存在的一些充要条件,导出了态射的加权......
通过态射的正则性,讨论加法范畴中态射的广义Moore-Penrose逆.给出了正则态射的广义Moore-Penrose逆存在的几个充要条件以及广义Mo......
研究态射集中的Г-逆的存在条件与星序的刻划.利用Г-环的方法得到了Г—Moore-Penrose逆存在的一些条件.给出了Г—Moore-Penrose逆......
Padberg J,Ehrig H等使用代数规格语义的Petri,基于图形转换理论提出一种通用构件组装框架,该框架可以适用于不同领域的动态和静态的......
讨论了带有对合*的一般范畴C中态射的加权Moore-Penrose逆,给出了加权Moore-Penrose逆存在的几个充要条件以及若干性质.......