【摘 要】
:
Experimental optimization of the growth process normally involves a long trial-and-error method before the target parameters of the epilayer/crystal are established.Modeling is aimed at understanding
【机 构】
:
Department of Applied Chemistry,Harbin Institute of Technology,Room 1019,92 Xidazhi Street,Harbin,Ch
【出 处】
:
第一届全国宽禁带半导体学术及应用技术会议
论文部分内容阅读
Experimental optimization of the growth process normally involves a long trial-and-error method before the target parameters of the epilayer/crystal are established.Modeling is aimed at understanding of the mechanisms underlying the trends observed experimentally and,thus,should reduce time required to improve the process characteristics.In this contribution,we present the results of modeling SiC Chemical Vapor Deposition (CVD) and Physical Vapor Transport (PVT) to illustrate the application of the simulation to the process analysis and optimization.
其他文献
InAlN/GaN heterstructures have attracted general attention due to their high spontaneous polarization and the possibility to improve the device reliability [1].Until now,although the InAN/GaN HEMTs wi
GaN的缓冲层漏电问题严重影响AlGaN/GaN异质结高电子迁移率晶体管(HEMT)的高频性能和夹断特性.引入高阻GaN做缓冲层可以有效解决漏电问题.利用低压金属有机物化学气相沉积(MOCVD)系统,通过引入InGaN插入层,在不降低GaN生长压力的情况下获得了非故意掺杂的高阻GaN薄膜,最高方块电阻达2.25×107Ω/sq.原子力显微镜证明高阻GaN薄膜具有平整、光滑的表面.低温光致发光光谱观
硅衬底上AlGaN/GaN异质结构因其优良的物理性能在功率电子器件领域有着广阔的应用前景.然而,由于硅衬底与外延层之间存在较大的晶格失配和热失配,GaN中位错密度较高,而且表面容易龟裂.虽然许多方法诸如低温AlN插入层、超晶格等被用来解决上述问题,GaN的晶体质量仍然有待提高.本文中提出了一种大失配诱导应力控制的生长方法.其利用预先提供的大晶格失配应力导致位错转弯的机制来过滤位错,这样较高质量的G
The effect of misfit strain on the incorporation of Al and Ga elements in AlGaN films was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM).Two series of samples (series A
Atomic layer deposition (ALD) is the most important tool for integration circuit (IC) industry,as the function of gate dielectric deposition due to its promising in good interface and thickness unifor
Epitaxial growth of high-quality AlN films have been realized adopting nitridation for sapphire combined with low-and high-temperature (LT-HT) alternation technique by metal organic chemical vapor dep
Over the past decades,many works on GaN-based materials and light-emitting diodes have been reported.High-performance LEDs based on GaN micro structures were also realized by selective area growth tec
GaN基器件近些年来发展快速.基于性价比的考虑,蓝宝石和硅衬底仍然是用来外延GaN的首要选择.但是不可避免的异质衬底会带来的晶格和热失配,进而造成GaN外延层的高位错密度.位错往往会充当非辐射复合中心,漏电通道,影响器件的光电效率和寿命.对激光器,以及对位错敏感的UV和HEMT器件,降低位错就成了一个首要解决的问题,发展了一种基于叠层掩膜衬底的一次外延技术,可以将位错密度降低到一个非常有竞争力的水
氮化铝(AlN)晶体是新型宽禁带半导体材料的典型代表,具有6.2eV的直接带隙、高热导率、高击穿场强、高电子饱和速率、高抗辐射能力等优良特性,且无毒性,对人体无害,对环境无污染,以及原料来源丰富.因此,氮化铝晶体是制作紫外光电器件以及高频、大功率、抗辐射的电子器件的理想材料.本文介绍物理气相传输(PVT)法制备大尺寸氮化铝晶体的相关工作,详细研究了生长环境(如坩埚及保温层材料等)、生长区域的温度条
由于AlN具有禁带宽度大,热导率高,击穿电压高,与AlxGa1-xN合金材料晶格常数及热膨胀系数接近等特点,使得AlN成为AlxGa1-N基紫外光电子器件及高功率、高频电子器件最理想的衬底材料.AlN体材料的主要生长方法是物理气相沉积(PVT)和氢化物气相外延(HVPE).相比于PVT技术,HVPE生长AlN的单晶具有杂质浓度低、光学性质好的特点,适合用于做为AlxGa1-xN基紫外发光及光电子器