论文部分内容阅读
近二十年来,沙柳材中密度纤维板的开发和推广,成为沙生灌木综合利用的一条有效途径。由于沙柳材纤维长度较短,长宽比和壁厚小,加之现有生产条件对沙柳材剥皮难以实现,沙柳材纤维中树皮含量较高,从而使沙柳材中密度纤维板与乔木中密度纤维板相比,存在吸水厚度膨胀率高,力学性能差的不足。针对这一现状,本文在沙柳材纤维中加入纤维形态较好的旱柳材纤维和杨木纤维制备中密度纤维板,对杨柳木材纤维增强沙柳材中密度纤维板进行了相关基础理论和关键技术研究。在对三种木材原料的纤维形态、化学成分、酸碱性、相对结晶度、表面官能团等特性研究基础上,采用ESR和FTIR技术分析了木纤维与UF树脂的胶合机理,采用DSC和DMA技术探讨了固化剂、防水剂等对UF树脂固化过程吸放热现象及热机械性能的影响,并对杨柳木材纤维增强沙柳材中密度纤维板的制备关键技术进行了优化。主要结论如下:(1)杨木、旱柳材纤维壁厚、长度和长宽比明显大于沙柳材纤维,三种木纤维壁腔比均小于1,都是很好的纤维原料;磨浆处理后木材综纤维素含量降低,木素、灰分、抽提物含量升高,pH值和酸碱缓冲容量、纤维素相对结晶度增大;与另外两种纤维相比,旱柳材纤维综纤维素含量高,沙柳材纤维抽出物含量高出明显,沙柳材纤维pH值小,酸碱缓冲容量大;三种木纤维木素含量、纤维素相对结晶度差异不大;磨浆处理后,木材表面活性基团明显增强,有利于胶合。(2) ESR结果表明,磨浆处理使木材表面自由基浓度明显增强,旱柳材纤维表面自由基浓度最高,沙柳材纤维最小;FTIR图谱显示:木纤维与UF胶合过程中木纤维-OH和UF的-CH2OH发生反应生成醚键;加入石蜡乳液,使木纤维和UF的亲水基团减弱,耐水基团增强,同时也降低了-NH-的形成几率,不利于UF树脂的固化;固化剂的加入,促进了UF中-OH、-NH2、-CH2OH等基团发生交联反应。(3) DSC研究结果表明,固化剂加入量不超过3%时,增大固化剂加入量能促进UF树脂固化,当加入量为2-3%时,同时也会加速UF树脂降解;增大石蜡乳液加入量,会一定程度的升高UF树脂固化峰的峰值温度,不利于UF树脂固化;固化剂加入量为1%时,加入过硫酸铵时UF树脂固化反应表观活化能、反应级数、频率因子及速率常数均高于硫酸铵和氯化铵。(4) DMA研究结果显示,固化剂用量增加,UF树脂固化过程的储能模量峰值温度、玻璃化转变温度下降,促进了UF树脂固化。当氯化铵、硫酸铵、过硫酸铵加入量分别为1%、2%、3%时,UF树脂固化过程中储能模量峰值最大。(5)杨柳木材纤维增强沙柳材中密度纤维板较佳工艺:热压温度180℃,时间0.6min/mm,压力3MPa,UF树脂施胶量12%,石蜡乳液加入量1.5%,固化剂加入量可为1%氯化铵或2%硫酸铵或0.5%过硫酸铵。以沙柳材纤维作为纤维原料主体,随旱柳材纤维、杨木纤维加入量的增加,中纤板力学性能随之增强,吸水性能降低;当固化剂过硫酸铵加入量0.5%,石蜡加入1.5%,旱柳材纤维加入量为10%~50%时,沙柳/旱柳中密度纤维板比沙柳材中密度纤维板的MOR、MOE、IB分别增加1.11~9.18%,2.26~15.31%,1~19.74%, TS降低1.30~5.89%;当杨木纤维加入量为10%-50%时,沙柳/杨木中密度纤维板比沙柳材中密度纤维板的MOR、MOE、IB增加3.93~16.33%,4.61~22.05%,4.61~26.08%,TS降低2.77~8.58%;沙柳/杨木中纤板的性能优于沙柳/旱柳中纤板。本研究结果表明,杨柳木材纤维增强沙柳材中密度纤维板各项性能明显优于沙柳材中密度纤维板;利用DSC、DMA等手段研究UF树脂固化历程及机械性能,能够预测工艺参数对纤维板性能影响,可作为纤维板工艺参数选择的有效辅助手段。