论文部分内容阅读
作为石油和天然气工业的废弃物,硫单质(S8)全球年产量巨大,如何变废为宝,实现硫从“无机向有机”的多样性转化,是人们长期追求的目标,也面临着巨大挑战。逆硫化的发现使S8变成了稳定的共聚物,从而使含硫新型材料的制备成为可能,该过程简单,原子效率高且绿色环保。然而,其在聚合物及相关领域应用的进一步发展受限于交联剂、温度和催化剂的选择。通过调研相关文献,发现逆硫化在锂硫电池、超级电容器、环境保护、红外光学材料等领域都有重要应用。本论文研究旨在制备新型富硫共聚物,并探索其在重金属离子吸附、超级电容器方面的应用。本论文主要内容如下:1.以S8和丙烯酰胺(AA)、N-烯丙基丙烯酰胺(PAA)、N,N-二烯丙基丙烯酰胺(2PAA)为共聚单体,通过逆硫化反应制备了(S-co-AA)、(S-co-PAA)、(S-co-2PAA)三种富硫共聚物。该系列反应无需添加催化剂,可以在较低的反应温度下实现。通过核磁分析、红外光谱分析、扫描电镜、热重分析表明该系列共聚物具有表面多孔,分子结构中存在大量氨基、羰基基团且物质结构较单一等特点。通过系列吸附实验,研究了初始离子浓度、pH值、吸附时间等因素对重金属离子吸附的影响。结果表明(S-co-AA)对水中镉、铜、铅、汞这四种重金属离子均有吸附作用,特别是对镉、铜离子的吸附能力较强,一次性去除率分别高达96.2%和93.2%。(S-co-PAA)、(S-co-2PAA)对水中汞离子吸附能力较强,一次性去除率分别为96%和95.1%,且抗干扰能力强。证明了该系列富硫共聚物在去除水中重金属离子方面有应用价值。2.以S8和双环戊二烯(DCPD)为共聚单体,通过逆硫化反应制备了富硫共聚物(S-co-DCPD),所制聚合物经氢氧化钾活化后,进一步热裂解制得富硫多孔碳材料(SPC)。通过扫描电镜、氮气吸脱附分析、全孔分析、X射线衍射、拉曼光谱表征,表明该材料具有588.06 m2 g-1的比表面积和多级孔结构。该碳材料表现出高达18.16%硫含量,通过循环伏安法(CV)和恒电流充放电法(CP)测试,发现该电极材料表现出良好的倍率性能。其在较高的电流密度下依然有较好的比电容,电容保持率高达80%。证明了该富硫多孔碳材料作为超级电容器负极材料有应用前景。3.此外,在生产实践环节研究了催化裂化(FCC)催化剂制备过程中的无铵后水洗离子交换工艺。以无铵离子交换工艺代替了常规铵洗离子交换工艺,考察了新工艺对所制备催化剂理化性质、元素组成以及重油催化裂化反应性能的影响。结果表明与常规工艺相比,新工艺具有等同的降钠效果,且有助于催化剂微反活性、重油催化裂化反应活性、抗污染性能的提高。