【摘 要】
:
随着社会的快速发展,微信、淘宝、微博等社交媒体用户数数以亿计,通过社交媒体可以发表心情、感想和对各类事件的看法等,并由此产生了大量的社交文本数据。通过对社交文本中的情感信息进行情感倾向挖掘,可以很直观的反映出用户个人的情感倾向和社会舆论问题。在政府舆论监督、企业管理决策、个人情感管理等方面都发挥着重要的作用。目前,针对传统文本情感倾向的分析研究已经比较成熟,但社交短文本的情感分析研究依然还比较落后
论文部分内容阅读
随着社会的快速发展,微信、淘宝、微博等社交媒体用户数数以亿计,通过社交媒体可以发表心情、感想和对各类事件的看法等,并由此产生了大量的社交文本数据。通过对社交文本中的情感信息进行情感倾向挖掘,可以很直观的反映出用户个人的情感倾向和社会舆论问题。在政府舆论监督、企业管理决策、个人情感管理等方面都发挥着重要的作用。目前,针对传统文本情感倾向的分析研究已经比较成熟,但社交短文本的情感分析研究依然还比较落后。社交短文本的情感分析主要存在着结构不规则、特征稀疏和分类效果不理想的问题。针对这三个问题,本文提出了三个相应的研究内容。(1)由于社交媒体追求简单性、随意性和开放性,导致了中文与外文混合使用的情况越来越多,造成了社交文本结构不规则问题。所以,本文提出了先采用基于字符串匹配的中英文混合分词技术,将中文、中英文、英文和数字、中文和数字,这几种结构的特征词进行合理分词。此外,近年来的表情符号的类型越来越多,这些表情符号不仅可以起到填充语义信息的作用,甚至还能够补充或改变社交文本的情感倾向。所以,本文将表情符号进行文字化处理后融入到文本中进行情感分析,不仅扩展了文本特征,还丰富了社交文本的内容和情感。(2)由于用户习惯发布简短的文字来表达对新闻事件的看法、对公众人物的喜恶和对商品的评价亦或是发泄个人情感。由此产生的社交文本内容通常比较短小,造成了特征稀疏问题。针对社交文本的特征词稀疏的问题,本文提出了基于信息增益的特征关联库扩展方方案,通过对社交文本的扩展,获得更多的特征用来进行情感分析任务。实验结果表明,进行特征扩展后情感分析实验较未扩展前的准确率都有明显的提高。(3)由于社交文本在结构上存在着前后依赖关系,单一的神经网络模型无法同时实现上下文语义提取和局部特征提取。所以,本文提出了融合情感信息的Caps Net-LSTM混合模型,该模型先采用胶囊网络(Capsule Network,Caps Net)进行局部语义和位置特征的提取,再采用长短期记忆网络(Long-Short Term Memory,LSTM)进行上下文语义提取,最后利用softmax分类器,进行社交文本的情感分析。实验结果表明,本文提出的Caps Net-LSTM混合模型在细粒度情感分析实验中准确率较LSTM模型提高了4个百分点,较Caps Net模型提高了3个百分点。
其他文献
自动调制分类(Automatic Modulation Classification,AMC)是信号解调前一个复杂且重要的技术,它在军事领域和民用领域都有广泛的应用。近年来,由于机器学习算法的引入,使得AMC技术备受关注。基于机器学习的AMC算法相比于传统算法有更高的识别精度和鲁棒性。本文深入研究并做了以下几方面的工作:1.针对复杂信道情况下,由于调制信号受噪声干扰导致识别准确率不高的问题,提出基
正确判断脑部神经胶质瘤基因型是突变还是野生类型,将有助于医生做出正确的预后治疗。针对活体组织检查会对患者造成一定的伤害、人工观察核磁共振图像准确率低的情况,本文借助计算机辅助的方式对神经胶质瘤进行判断。本文以神经胶质瘤分型为目的,多序列核磁共振图像为数据基础,深度学习为方法,从预处理到肿瘤分型分别提出了不同的深度学习网络结构。本文的创新性工作包括以下内容:(1)针对预处理时,3D Slicer等软
第五代(The Fifth Generation,5G)通信系统采用更先进的通信技术对5G信道建模提出了更高的要求。在无线信道建模的研究领域中,最大的挑战是建立有效且准确的信道模型,能够模拟影响无线通信系统性能分析的所有传播特性。车对车(Vehicle-to-Vehicle,V2V)信道建模作为5G信道建模研究的热点之一,越来越受到研究人员的关注。在V2V通信场景中,发送端(Transmitter
随着物联网的迅速发展,射频能量采集技术的应用范围也逐步扩大。作为射频能量采集系统中的能量接收和转换器件,整流天线在系统中发挥着重要的作用。整流天线的一个研究方向是在有限的功率密度环境下尽可能地吸收更多能量以提高能量转换效率。实际的能量采集过程中,天线的辐射方向、极化方式以及与整流电路的合并方式等都制约着能量采集系统的接收能力。本文设计了极化可重构全向圆极化天线,通过切换极化方式在辐射范围内提高天线
随着图像处理技术的发展和嵌入式硬件的进步,基于机器视觉的无人机着陆已经成为非常热门的研究领域。无人机视觉着陆控制是无人机飞行控制系统的关键技术之一,它对无人机着陆的稳定性,准确性,可靠性和实时性能有很高的要求。基于视觉的着陆系统是学者们研究的热点,与传统的系统相比,该系统具有成本低、抗干扰能力强的优点。实现无人机视觉着陆的基本要求是获取无人机所处环境的信息并通过该信息准确估计无人机的位姿姿态,其中
由于光照、色调等因素的干扰,采集自不同摄像头的同一个行人的图像通常存在视觉差异,而不同行人的图像却可能很相似,因此往往很难用线性模型来区分它们。我们通过对传统的只能用于单视图场景的协同表示分类器(CRC)进行跨视图非线性扩展,提出跨视图核协同表示分类(CV-KCRC)框架并将之应用于行人重识别。CV-KCRC不仅能增强CRC处理跨视图异类样本线性难分问题的能力,而且还能提升了模型的判别力和鲁棒性。
近年来,物联网(Internet of Things,Io T)技术发展迅速,其应用领域已经扩展到智能家居、智能医疗、农场监测和智慧交通等方面。由于无线通信环境的开放性,安全与隐私问题是物联网发展的关键因素。认证方案是实现物联网安全的第一道防线,但是单一认证方案容易造成传感器节点认证的延迟、网络资源占用问题,而群组认证方案能够提高网关对节点的认证效率,适合节点数目繁多的物联网环境。此外,若节点以真
信息隐藏是保证网络通信数据安全的重要手段之一,发送方可以通过密钥和特定算法将秘密信息嵌入到载体中,再由接收方通过密钥和特定算法提取出秘密信息。其中,图像因其易获取性和多样性,成为目前使用最为广泛的隐藏载体之一。信息隐藏技术不仅能够保证秘密信息本身的安全,还能保证载密图像进行可靠的传输,因而受到国内外学者的广泛关注及深入研究。传统自适应图像隐写算法对于待改变像素位置选择大多依赖人为经验设计,需要耗费
深度神经网络在图像分类、目标识别等任务中已经取得了显著效果,然而训练集(源域)和测试集(目标域)的数据分布不一致会导致模型的性能大幅下降。领域自适应在解决训练数据与测试数据分布不同方面具有重要的现实意义。本文重点研究在目标域无标签的情况下提取领域不变特征,提高模型对于目标域的分类准确率。现有的域适应方法忽略了目标样本的分类信息,在特征提取过程中生成器往往在分类边界产生有分歧的特征从而影响了模型分类
心理学研究表明图像刺激会唤起人类的不同情感响应,图像情感分类任务旨在运用机器学习模型自动预测观测者看到图像时的情感反映,构建图像情感自动预测模型在社交网络、互动广告推广等场景中具有重要的应用价值。现有研究表明相比于整幅图像,图像的某些局部区域会更易引起人类情感响应,而注意力机制则可以有效学习图像中与任务关联的关键区域。为此,本论文提出了联合视觉显著性的图像情感分类网络模型。具体工作包括两个方面:(