论文部分内容阅读
航空电子系统是飞机的“大脑”和“神经中枢”,其发展经历了分立式、联合式、综合模块化(Integrated Modular Avionics,IMA)以及目前最新的分布式综合模块化(Distributed Integrated Modular Avionics,DIMA)的四代典型技术发展。DIMA的设计思想通过分布式综合技术,并结合时间触发(Time-Triggered)通信和分区隔离调度机制,极大地增强了综合电子系统在执行任务时的实时性、可靠性和安全性,代表了未来武器装备的发展趋势,未来航空电子系统架构逐步演变为基于网络的分布式、综合化、模块化的通用系统平台。时间触发以太网(Time-Triggered Ethernet,TTE)属于时间触发架构下的航空机载总线,相比于传统机载总线,TTE具备高可靠性和安全性、良好的兼容性以及消息传输确定性等优点。在新一代综合化航空电子系统中,采用时间触发以太网作为底层通信网络的DIMA系统,即基于时间触发的分布式综合模块化航空电子系统(Time-Triggered based Distributed Integrated Modular Avionics,TT-DIMA)可以满足未来混合安全关键等级功能综合化的发展趋势,代表着未来航电系统架构的发展方向。本文研究面向DIMA应用的时间触发以太网性能优化与评估技术,其研究成果已经在卫星姿态控制系统、运载火箭控制系统、船舶分布式控制系统等典型应用场景下得到验证,具有高时间确定性,强实时性和高可靠性等特点。本文的研究工作主要包括基于TT-DIMA业务约束的网络拓扑结构优化、TT-DIMA系统时钟同步控制、TT-DIMA混合安全关键业务调度、TT-DIMA流量模型优化及性能评估四个主要研究内容。论文的创新工作包括:(1)针对TT-DIMA网络资源分配优化问题,重点研究了TTE网络拓扑结构优化技术,目标是在满足网络应用的安全性和实时性要求的前提下,生成一个具有较低架构成本、负载均衡、相对路径短的网络拓扑结构。本文在深入分析了以太网系统模型之后,提出一种新的网络拓扑优化方法,该拓扑优化算法充分考虑了TTE网络通信本身具有的时间确定性和网络拓扑的任意性,可以使得整体网络拓扑架构成本更低,整个网络的节点以及链路上的负载分布更加均匀,使时间触发业务流编排更加合理,为DIMA系统提供全局性能最优化的网络拓扑结构。(2)针对DIMA系统应用业务不同步带来应用系统延迟大、不确定、应用组合性差等问题,提出了网络级和应用级两级同步策略,目标是降低系统应用业务端到端之间的延迟。首先,详细研究了TTE网络时钟高精度同步的方法,利用FPGA实现了TTE标准同步算法;然后,进一步研究分区操作系统VxWorks653与TTE通信网络间的时钟同步技术,提出了一种分区操作系统时钟和TTE网络时钟的高精度时隙对齐方法,使得系统的应用业务可以按照时间触发的模式进行编排调度,有效降低业务端到端的通信延迟。最后,利用自研的TTE交换机和TTE节点机搭建了一整套TT-DIMA演示验证系统,在真实的硬件环境下,TTE网络节点间的同步精度不超过48ns,应用分区间时钟同步精度不超过70ns,端到端的应用消息通信延迟在[7.18μs,7.22μs]范围之间,延迟抖动40ns,这些实验结果验证了同步算法的正确性和有效性,也为进一步开发TT-DIMA产品提供了数据支撑。(3)由于DIMA系统本身的业务特性,TTE网络需要同时支持时间触发和事件触发两种业务,以满足不同安全等级的应用场景。为了进一步提高系统资源的利用率,提出了一种时间触发业务静态调度表生成算法,将调度表编排问题抽象成二维装箱及带约束的优化问题,优化目标是使得时间触发业务尽可能的分散排布,从而得到数目最大的空闲时隙数,为后续事件触发业务提供均匀的时间资源以提升系统的稳定性。仿真实验结果表明,提出的优化算法要优于传统装箱算法对调度表的编排,在平均时延和时延抖动两个指标上都有明显的降低,保证了DIMA系统对关键业务的确定性通信延迟,同时最大限度地满足非安全关键业务。(4)传统的网络演算模型对系统时延分析存在较大的悲观性,结合DIMA系统中业务特点提出了一种新的通信流量优化模型和性能评估方法,通过引入时间触发(TT)流量的缺包周期以及速率约束(RC)流量的调节因子,分别对RC流量的服务曲线及到达曲线进行了优化并基于该模型进行了时延分析,时延分析结果更接近真实网络运行情况,使系统调度表编排更加合理,提高了系统资源的利用率。