论文部分内容阅读
过二硫酸盐(peroxodisulfate,PDS)是一类常见的氧化剂,因其具有绿色环保、价格低廉、便于保存和运输等优点,近些年在水处理领域受到了日益增加的关注。PDS的应用通常需要一定的外界条件激发,使其分解产生具有强氧化能力的硫酸根自由基(SO4??),从而实现对水中有机微污染物的高效降解。有研究发现某些碳材料能够通过非自由基路径增强PDS的氧化能力,然而潜在的反应机理尚不清晰。本研究采用商品碳纳米管(carbon nanotube,CNT)作为PDS的活化剂,深入探究CNT活化PDS的非自由基机理,鉴定反应中产生的氧化活性成分,考察了不同有机微污染物在PDS/CNT体系的降解效能及氧化产物。着重研究了无机卤素离子以及典型卤代有机物在PDS/CNT体系的转化,据此评估该体系卤代副产物的生成势。
PDS/CNT体系对有机化合物的氧化展示出了明显的选择性,对富电子的酚类化合物及磺胺类药物具有较高的氧化活性,但几乎不能氧化难降解的芳香族化合物如苯甲酸。利用不同类型的CNT活化PDS氧化有机物时,发现了相似的选择性。通过自由基和单线态氧捕获实验、电子顺磁共振技术、傅立叶变换红外光谱法以及监测PDS分解等方法,证实CNT活化PDS的非自由基机理主要是通过PDS与CNT表面某些活性位点(如氮原子的邻域和缺陷位点)结合产生了表面活性复合物,其氧化能力相对温和,因此对有机化合物的降解具有较强的选择性。
选取醋氨酚(acetaminophen,ATP)作为酚类污染物的代表,系统地研究其在PDS/CNT体系的氧化动力学和产物。结果表明PDS/CNT体系对ATP具有很高的氧化活性,在研究的实验条件下,ATP在中性pH下的氧化速率最快,假一级反应速率常数(kobs)为0.6682min-1。pH升高或降低都导致其氧化速率的下降,在pH=5和9时,kobs值分别为0.3045和0.4567min-1。随着PDS投量的增加,ATP在PDS/CNT体系的氧化速率先加快后保持不变,即有机物在PDS/CNT体系的降解展示出与PDS浓度有关的饱和动力学。ATP的氧化速率随着CNT投量的增加而线性增加。无机阴离子如氯离子和碳酸根离子的存在几乎不影响ATP的降解,而腐殖酸对ATP的降解展示出一定程度的抑制作用。PDS/CNT体系氧化ATP产生了多种中间产物,反应路径主要涉及羟基化作用、自由基耦合过程、分子内脱水反应以及乙酰氨基转化产生亚硝基的反应。
PDS/CNT体系与溴离子(Br?)的反应活性很低,反应过程中未检测到次溴酸(HOBr)或溴酸盐(BrO3?)的生成。溴代有机物如2-溴酚(2-bromophenol,2-BrP)、3-溴酚(3-bromophenol,3-BrP)和4-溴酚(4-bromophenol,4-BrP)能够被PDS/CNT体系有效地降解,在研究的实验条件下,它们在中性pH下的氧化速率分别为0.1870,0.0951和0.1223min-1。溴酚与PDS/CNT体系的反应产生了多种聚合溴代物,主要包括羟基化的多溴联苯和羟基化的多溴联苯醚,它们的生成路径主要涉及到PDS/CNT体系与溴酚发生一电子氧化反应产生酚氧自由基,这些自由基随后经历耦合反应产生了一系列的聚合产物。尽管这些溴代聚合产物具有比母体有机物更高的毒性,但由于CNT良好的吸附性能,这些产物生成后几乎完全被CNT吸附去除,未在反应后的溶液中检出。此外,SO4??氧化溴酚的产物与PDS/CNT体系的氧化产物具有较大差异,揭示了自由基与非自由基氧化过程的本质差异。
不同于Br?,碘离子(I?)能够与PDS/CNT体系快速反应,并产生了等化学计量比的次碘酸(HOI),然而HOI进一步向碘酸盐(IO3?)的转化是可忽略的。I?的存在加速了酚类化合物在PDS/CNT体系的氧化,例如,在研究的实验条件下,10μM I?的存在使得对羟基苯甲酸(p-HBA)的氧化速率从0.0058增大到0.0122min?1,即kobs值增大约2.1倍,这主要是由于I?的转化产物HOI对酚类化合物具有较高的反应活性。以p-HBA为代表物探究了I?存在时PDS/CNT体系与有机物反应过程中碘代氧化副产物的产生情况。结果表明,p-HBA在PDS/CNT/I?体系的转化产生了多种碘代芳香族化合物,它们的生成路径主要涉及到HOI与苯环的碘代反应、脱羧反应、一电子转移过程以及自由基耦合反应等。实际水体加标实验中也检测到了类似的碘代芳香族化合物,对这些产物进行半定量分析的结果显示,随着反应的进行,它们的浓度先升高至最大值,随后逐渐降低至完全消失,表明PDS/CNT体系能够进一步氧化去除产生的碘代芳香族副产物。此外,以碘帕醇(iopamidol,IPM)作为碘代有机物的代表,PDS/CNT体系不能有效降解IPM,这归因于非自由基活性成分对结构复杂的大分子有机物反应活性较低。因此,PDS/CNT氧化技术在用于降解水中有机微污染物时,具有较低的溴代或碘代氧化副产物的生成风险。
PDS/CNT体系对有机化合物的氧化展示出了明显的选择性,对富电子的酚类化合物及磺胺类药物具有较高的氧化活性,但几乎不能氧化难降解的芳香族化合物如苯甲酸。利用不同类型的CNT活化PDS氧化有机物时,发现了相似的选择性。通过自由基和单线态氧捕获实验、电子顺磁共振技术、傅立叶变换红外光谱法以及监测PDS分解等方法,证实CNT活化PDS的非自由基机理主要是通过PDS与CNT表面某些活性位点(如氮原子的邻域和缺陷位点)结合产生了表面活性复合物,其氧化能力相对温和,因此对有机化合物的降解具有较强的选择性。
选取醋氨酚(acetaminophen,ATP)作为酚类污染物的代表,系统地研究其在PDS/CNT体系的氧化动力学和产物。结果表明PDS/CNT体系对ATP具有很高的氧化活性,在研究的实验条件下,ATP在中性pH下的氧化速率最快,假一级反应速率常数(kobs)为0.6682min-1。pH升高或降低都导致其氧化速率的下降,在pH=5和9时,kobs值分别为0.3045和0.4567min-1。随着PDS投量的增加,ATP在PDS/CNT体系的氧化速率先加快后保持不变,即有机物在PDS/CNT体系的降解展示出与PDS浓度有关的饱和动力学。ATP的氧化速率随着CNT投量的增加而线性增加。无机阴离子如氯离子和碳酸根离子的存在几乎不影响ATP的降解,而腐殖酸对ATP的降解展示出一定程度的抑制作用。PDS/CNT体系氧化ATP产生了多种中间产物,反应路径主要涉及羟基化作用、自由基耦合过程、分子内脱水反应以及乙酰氨基转化产生亚硝基的反应。
PDS/CNT体系与溴离子(Br?)的反应活性很低,反应过程中未检测到次溴酸(HOBr)或溴酸盐(BrO3?)的生成。溴代有机物如2-溴酚(2-bromophenol,2-BrP)、3-溴酚(3-bromophenol,3-BrP)和4-溴酚(4-bromophenol,4-BrP)能够被PDS/CNT体系有效地降解,在研究的实验条件下,它们在中性pH下的氧化速率分别为0.1870,0.0951和0.1223min-1。溴酚与PDS/CNT体系的反应产生了多种聚合溴代物,主要包括羟基化的多溴联苯和羟基化的多溴联苯醚,它们的生成路径主要涉及到PDS/CNT体系与溴酚发生一电子氧化反应产生酚氧自由基,这些自由基随后经历耦合反应产生了一系列的聚合产物。尽管这些溴代聚合产物具有比母体有机物更高的毒性,但由于CNT良好的吸附性能,这些产物生成后几乎完全被CNT吸附去除,未在反应后的溶液中检出。此外,SO4??氧化溴酚的产物与PDS/CNT体系的氧化产物具有较大差异,揭示了自由基与非自由基氧化过程的本质差异。
不同于Br?,碘离子(I?)能够与PDS/CNT体系快速反应,并产生了等化学计量比的次碘酸(HOI),然而HOI进一步向碘酸盐(IO3?)的转化是可忽略的。I?的存在加速了酚类化合物在PDS/CNT体系的氧化,例如,在研究的实验条件下,10μM I?的存在使得对羟基苯甲酸(p-HBA)的氧化速率从0.0058增大到0.0122min?1,即kobs值增大约2.1倍,这主要是由于I?的转化产物HOI对酚类化合物具有较高的反应活性。以p-HBA为代表物探究了I?存在时PDS/CNT体系与有机物反应过程中碘代氧化副产物的产生情况。结果表明,p-HBA在PDS/CNT/I?体系的转化产生了多种碘代芳香族化合物,它们的生成路径主要涉及到HOI与苯环的碘代反应、脱羧反应、一电子转移过程以及自由基耦合反应等。实际水体加标实验中也检测到了类似的碘代芳香族化合物,对这些产物进行半定量分析的结果显示,随着反应的进行,它们的浓度先升高至最大值,随后逐渐降低至完全消失,表明PDS/CNT体系能够进一步氧化去除产生的碘代芳香族副产物。此外,以碘帕醇(iopamidol,IPM)作为碘代有机物的代表,PDS/CNT体系不能有效降解IPM,这归因于非自由基活性成分对结构复杂的大分子有机物反应活性较低。因此,PDS/CNT氧化技术在用于降解水中有机微污染物时,具有较低的溴代或碘代氧化副产物的生成风险。