【摘 要】
:
本文基于范希尔几何思维水平理论、《普通高中数学课程标准(2017年版2020年修订)》(简称《课标(2017)》)和高考要求,对高二学生直线方程部分的思维水平进行具体调查研究。通过细化范希尔理论五层次分类特征,得出直线方程的几何思维各层次评判标准,制定测试卷,在各个水平上均设计了一定量的测试题,经过试测后,对182名高二学生进行直线方程部分的正式的测试调查,通过对测试结果进行分析,并结合对教师和学
论文部分内容阅读
本文基于范希尔几何思维水平理论、《普通高中数学课程标准(2017年版2020年修订)》(简称《课标(2017)》)和高考要求,对高二学生直线方程部分的思维水平进行具体调查研究。通过细化范希尔理论五层次分类特征,得出直线方程的几何思维各层次评判标准,制定测试卷,在各个水平上均设计了一定量的测试题,经过试测后,对182名高二学生进行直线方程部分的正式的测试调查,通过对测试结果进行分析,并结合对教师和学生的交流访谈,得到结论:1.高二学生在直线方程部分的总体思维水平达到了水平2,随着水平的提升,得分率在总体上逐步降低。大多数高二学生的思维水平处于水平2和水平3,水平越高思维发展遇到的困难越大。2.相邻思维水平间存在显著的相关性,前一水平的发展为后一水平的发展打下良好基础。3.不同性别的高二学生在直线方程部分的思维水平发展存在一定差异,思维水平发展较好的男生多于女生。4.不同选科方向的高二学生在直线方程部分的思维水平发展不存在明显差异,但物理方向的学生在较高水平上的思维发展总体上优于历史方向的学生。在此基础上分析高二学生处于各思维水平时,可能遇到的思维障碍,并进行归因分析,提出相应教学建议,为教师改进教学和学生调整自身学习方法提供参考,促进学生几何思维水平的提升。
其他文献
HPS教学模式是一种基于科学本质,渗透科学史、科学哲学及科学社会学的教学模式。在高中生物学教学中开展HPS教学既是培养学生核心素养的需要,也是应对新高考提升学生综合素质与实现课堂教学有效性的要求。本研究通过问卷调查漳州市区某中学高中年级的学生对HPS教学的看法和建议,问卷调查与访谈一线生物学教师,了解当前高中生物学中HPS教学现状,发现学生与教师都高度肯定HPS的教学价值,但受限于课时及教师理论认
二元一次方程组是初中方程的重要组成部分,是一元一次方程的继续与发展,也是线性方程组、平面解析几何等领域的基石,有着承上启下的作用。目前对于二元一次方程组认知水平的研究较少,而SOLO分类理论注重学生学习质量的评价,可以很好地分析学生解答过程的思维水平和认知水平,因此本文以SOLO分类理论为依据,研究初中生二元一次方程组的认知水平。本文从二元一次方程组的概念理解、简单应用、综合运用三个维度出发设计测
在初中数学教育阶段,一次函数的内容对学生学习其他函数有着重要作用,因此研究学生一次函数的认知程度具有重大的意义。传统的学习评价侧重于量化评价,缺乏对质的评定,因此,对学生的评价是片面的,而SOLO分类理论是侧重于质的评价,刚好弥补传统评价的不足。因此本文以比格斯的SOLO分类理论为指导,编制一次函数理解水平评价标准,编制测试卷,对漳州市某中学初中学生展开调查。通过学生的作答过程对学生一次函数认知水
为全面推进“课程思政”建设,落实“立德树人”根本任务。数学教学作为自然学科的基础,不仅要传授知识,还要提升学生的个人品质,为新时代培养社会主义事业建设者和接班人。本文通过研究勾股定理的教学案例,分析初中数学融入思政的教学效果。本文结合社会主义核心价值观,设计课程思政元素理论模型,进而编制调查问卷、访谈提纲。定性与定量分析福建省泉州市某中学初中数学的思政水平,其现状为:(1)教师思政目标不明确;(2
发现问题、提出问题、分析问题以及解决问题的能力即“四能”,以问题为导向发展学生“四能”可以让学生重视问题解决的情境性、全程性、探索性,促进学生学会数学思考。问题驱动式教学通过有效地设计、探究和解决问题,激发学生的学习兴趣和动力,实验表明能有效地促进四能的培养。本研究以函数的概念与性质为例,针对某学校两个班级的高一学生,应用问题驱动式教学培养学生的“四能”作了系列研究:第一,为了如实地反映学生“四能
向量知识综合性极强,是高考的重点考察内容之一,但实际教学中高中生的向量学习存在许多问题,因此诊断学生的向量认知结构,提出完善建议是很有必要的。本研究采用问卷调查法和访谈法展开研究,本研究测试卷是围绕向量知识的学业要求,结合向量的概念、命题、命题域、命题系四大建构步骤进行设计。利用Excel2019和SPSS23.0统计软件对收集的测试数据进行分析,结合部分师生的访谈,实际有效地评判诊断高中生向量C
教材是教师和学生展开教学活动的主要工具,结合数学核心素养对不同版本的教材进行比较研究,能够发现不同版本教材之间的异同,帮助教师更好地理解和使用教材,更好地培养“全面发展的人”。本研究选取人民教育出版社2019年出版的《普通高中课程标准实验教科书·数学(A版)》和2004年出版的《普通高中课程标准实验教科书·数学(A版)》其中的“数列”内容作为研究对象,基于建构主义、多元智能等理论,运用文本分析和比
作为解析几何的入门章节,圆锥曲线是高中数学的教学重点。从动态的概念形成过程到静态的研究对象,学生存在着不同的理解水平。APOS理论是关于学生学习数学概念的重要理论,对指导概念教学起着举足轻重的作用。本文以问卷调查为主要研究方法,以APOS理论为基准制定圆锥曲线概念理解水平分析框架,并据此框架设计测试卷,展开基于APOS理论的圆锥曲线概念教学实验。通过在实验班与对照班实施不同的教学设计,在完成概念教
数学理解性教育已成为当前国内外数学教育研究的热点和重点。学习数学需要依靠准确的理解,只有理解了才能算学好数学。三角函数作为高中函数主题的一部分有其特殊性,如何在教学中帮助学生对三角函数知识达到更高水平的理解十分重要。数学理解是一个复杂的心理活动,所以需要一个外在表现的评定,于是本文基于“超回归”数学理解模型提出教学策略指导三角函数教学:有目的、有计划地鉴别学生的理解活动,判断学生当前的理解情况,旨
“课程思政”是指在各学科教学的过程中自然地融入思想政治教育,有利于充分发挥每门课程的育人功能,对于构建“三全育人”的育人格局,落实立德树人的根本任务具有重要的作用。基于相关政策文件和文献研究,探索高中数学教学践行课程思政的理论模型,划分为国家维度、社会维度、个人维度和学科育人维度,从这四个维度又细分出共9个子维度。本文采用访谈法、问卷调查法和课堂观察法,以了解高中阶段课程思政实施的现状以及高中生关