【摘 要】
:
装配序列规划是机械产品装配工作中的基础环节,亦是决定装配质量的重要环节,装配序列的合理规划直接影响装配的效率和成本消耗,因此如何使装配序列规划过程更加精确与高效成为了现在制造业研究的重要问题。智能优化算法的应用为具有约束条件限制的装配序列规划问题提供了一种高效的路径寻优方法,装配仿真技术为验证装配序列的准确性提供了保障。本文以机翼为研究对象,提出了利用蚁群遗传混合算法对机翼装配序列进行优化的方法,
论文部分内容阅读
装配序列规划是机械产品装配工作中的基础环节,亦是决定装配质量的重要环节,装配序列的合理规划直接影响装配的效率和成本消耗,因此如何使装配序列规划过程更加精确与高效成为了现在制造业研究的重要问题。智能优化算法的应用为具有约束条件限制的装配序列规划问题提供了一种高效的路径寻优方法,装配仿真技术为验证装配序列的准确性提供了保障。本文以机翼为研究对象,提出了利用蚁群遗传混合算法对机翼装配序列进行优化的方法,并进一步利用装配仿真技术验证结果的可行性,最终达到提高装配序列规划效率的目的。本文具体研究内容如下:1)建立装配序列评价函数。首先对机翼零件信息、装配规则等知识进行研究,找到装配序列规划的影响因素。以基本装配规则、装配工具和装配方向变换次数为约束条件,构建装配序列评价体系,并依此定义机翼装配序列可行性评价函数。2)设计面向机翼装配序列优化的蚁群遗传混合算法。对蚁群与遗传算法的原理与特性进行研究和剖析,以机翼为研究对象,设计编码方式、遗传算子、适应度函数以及状态转移概率、信息素更新方式和各参数取值范围,最终完成混合算法具体实施步骤的设计。3)实现装配序列优化系统。通过编程具体实现混合算法,建立机翼装配信息数据库作为算法计算的数据源,开发机翼装配序列优化系统,通过系统的人机交互界面调整算法参数生成装配序列优化结果,并集成了装配仿真子系统。4)装配仿真验证。首先根据总结的机翼装配零件的信息建立机翼三维模型,然后根据优化算法得到的装配序列结果规划装配工艺路线,最后利用KM3DAST软件对机翼的装配过程进行模拟操作,对装配序列优化结果的可行性进行最终验证,并及时反馈信息给装配工艺人员。本文在开展一系列研究和验证工作之后,可输出指导机翼装配工艺过程的视频和文字文件,供装配工艺人员参考。
其他文献
人体动作识别作为计算机视觉领域的关键技术之一,对现代社会的发展进步起到至关重要的作用。如何在不受复杂环境和目标个体差异的影响下提高机器识别人体动作的准确度,并使其快速准确的理解人所表达的动作信息是目前各大领域研究者们关注的重点。由微软发布的Kinect设备可采集三种不同类别的数据,其中深度数据和骨骼数据只取决于目标的空间位置,具有颜色无关性,动作识别受外界因素的干扰较小,为人体动作识别技术的研究提
随着科技的不断进步,相关电子元器件的制造产业取得了高速发展,自动检测电子元器件产品质量也成为了电子元器件生产的现实需要。在自动检测领域中,“检测精度”与“检测速度”是两个十分重要的检测的指标。本文根据工业生产环境中对检测精度和速度的不同需求,提出以下两种需求目标:(一)允许少量精度损失的情况下以高速度为目标;(二)以较高精度的电子元器件表面缺陷检测为目标。针对这两种需求目标,本文分别设计了两种基于
交通运输是一个城市的经济命脉,城市交通系统是一个复杂、庞大的系统,具有不确定性、多变性、随机性。随着城市车辆数量的不断增加,传统的交通信号配时方案无法应对,无论国内外,每年因交通拥堵造成的多方面损失都是巨大的。而智能交通信号配时技术的出现,突破了传统交通信号配时的危机和瓶颈。近些年来,随着智能技术的发展,基于深度强化学习(DQN)的交通信号配时技术成为智能交通信号配时中的主流。基于DQN的交通信号
随着计算机视觉技术飞速提升再加之社会各界大力发展,基于深度学习的行人检测与跟踪技术愈来愈受到国内外专家的科研重视,各国科研所与科技公司都对此展开了着力研究。人们对于安全与隐私意识也愈发提高,对于室内监控则变得越来越重视并在教学楼,火车站,候机楼等各种场合都有着视频进行记录,用监控学生或员工的安全问题;同时也可以在室内某些恶劣情况发生时检测人们的轨迹检测并记录下来,及时发现情况将人身和经济损失降低;
随着当今社会人工智能的迅速发展,各行业对无线定位技术的需求不断增加。目前飞机机翼的装配复杂,尺寸较大,在实际的装配过程中定位难、在装配时需要大量工人协作装配,工人仅根据经验或纸张看板装配,会出现错装、漏装等情况。为了满足工人对装配资源的定位以及装配信息可视化的需求,采用基于RFID技术和UWB(超宽带)技术的复合定位方案实现状态信息的获取,以建立实时更新的、现场感强的“真实”飞机机翼模型,利用真实
传统的装配辅助系统都是基于两个方向——虚拟装配辅助系统和PC端的装配辅助系统。虚拟装配辅助系统只能作为前期培训使用,并不能将装配过程与其结合,所以该技术有着较大的局限性。而基于PC端的装配辅助系统虽然也可以在装配过程中查看各种必要的信息,但是这也意味着用户必须停下手中的工序去操作电脑,这大大降低了整体的效率,同时其也存在着不够形象、晦涩难懂的缺点。本文针对以上两种装配辅助技术存在的不足和未来传统制
随着现代社会不断发展,手机、电脑等电子设备已经成为人们日常生活中不可或缺的一部分,同时摄像头等设备在大街小巷发挥着重要作用。超市中,摄像头可以实时记录突发情况;教室中,摄像头可以实时的记录学生的行为活动。监控摄像头中含有大量信息,通过监控视频分析人体行为异常信息已逐渐成为了各个领域的热门话题。人体异常行为检测的研究对于室内场景下分析人体行为提供了有利条件,逐渐成为了一个重要的研究课题。所谓人体异常
眼底图像中的视网膜血管是人体重要的反射区,可以根据视网膜血管的病变程度,了解其他部位的疾病。随着深度学习人工智能技术的发展,计算机技术辅助医疗疾病的诊断已成为一种趋势。本文对图像分割以及视网膜血管分割的国内外现状进行了深入的总结,介绍了深度学习视网膜血管分割相关的理论知识。目前视网膜血管分割方法还存着分割准确率不高、灵敏度较差、错误识别分割区域等问题。针对这些问题,运用深度学习方法,对视网膜血管进
水声传感器网络(Underwater acoustic sensor network,UASN)作为水下物联网感知层的重要组成部分,在海洋工程监测、开发海洋资源、预防自然灾害等多个领域具有广阔的应用前景。UASN在实际应用中需要部署大量节点,并且需要节点间高效的信息交互,协同完成具体任务。因此面向UASN的分簇、路由技术成为学术界研究的热点。水声信道长时延、窄带宽、高误码率等特点,使得传统的传感器