非对称忆阻电路的数值分析与硬件实验

来源 :常州大学 | 被引量 : 0次 | 上传用户:a5354796
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
紧磁滞回线是测评物理器件或数学模型是否为忆阻的关键依据,其对称特性是忆阻的重要特征之一。受物理制备的极板材料选择、介质反应机制等因素的影响,忆阻物理器件的端口伏安关系普遍具有非对称的紧磁滞回线特征。目前,非对称忆阻模型及其电路应用研究尚未引起研究者的全面关注,相关科研成果仅有零星报道,具有重要的研究意义。基于此,本文提出了三种非对称忆阻模拟器,并构建了不同的忆阻振荡电路,研究了由忆阻非对称性所诱导的复杂动力学行为。首先,本文通过在RC忆阻二极管桥模拟器上引入两个并联二极管阵列,提出了一种并联型非对称忆阻二极管桥模拟器,并完成了该忆阻模拟器的数学模型推导与紧磁滞回线的仿真分析。然后,通过改变并联二极管的个数和电路元件参数,揭示了忆阻蔡氏电路中非对称的吸引子演化行为。通过硬件实验对数值仿真的结果进行了验证。其次,本文改进了并联型非对称忆阻二极管桥模拟器,提出了一种有源非对称忆阻二极管桥模拟器。验证了该忆阻模拟器的指纹特征,并着重探讨了激励频率和对称度控制参数对紧磁滞回线非对称度的影响。基于构建的无感忆阻蔡氏电路,揭示了吸引子的非对称演化现象,并阐明了其产生机理。通过硬件实验对数值仿真的结果进行了验证。最后,本文通过在忆阻二极管桥的一个桥臂上嵌入一个直流偏置,提出了一种直流偏置型非对称忆阻二极管桥模拟器。推导了该忆阻模拟器的数学模型,并研究了直流偏置影响下的非对称的紧磁滞回线。通过将该忆阻模拟器引入到Shinriki振荡电路中,构建了一个忆阻Shinriki振荡电路,并利用多种数值分析方法研究了直流偏置诱导的动力学行为,并且通过硬件实验对数值仿真的结果进行了验证。
其他文献
烯丙基胺类以及含氰基类化合物在有机合成转化中相当重要,作为医药产品与合成中间体广泛存在。目前,过渡金属如钯、铜、铑、铱和钴等催化剂已经被广泛探索和研究。相比其他几种昂贵的过渡金属,铜盐以其廉价易得的优点脱颖而出。传统的烯丙基胺化和氰化,已有诸多科研工作者探索和研究。然而,开发出更加有魅力的反应同样值得期待。故本论文分为两类工作进行如下探究:(1)铜催化芳基环丙烷与N-氟代双苯磺酰胺合成烯丙基胺类衍
学位
搪玻璃搅拌器兼具金属的强度和搪玻璃的耐腐蚀性,广泛应用于化工、医药、染料、农药等行业。由于搪瓷工艺的限制,搪玻璃搅拌器的形状曲率和拐角弧度都不能过大,不能像金属搅拌器一样做出任意形状,其性能也会受到限制。目前,对于结构相对简单的桨式、锚式、框式、叶轮式搪玻璃搅拌器研究较多,并制定相关行业标准。但是对于桨叶扭曲、搪瓷难度大的推进式搪玻璃搅拌器研究和应用较少,尚未出台行业标准。由于推进式搪玻璃搅拌器性
学位
抗生素被广泛使用在各个领域,用来治疗人类和动物感染疾病以及促进动植物生长等。据官方统计其消费量在2000年至2015年间增长了65%。其中,典型的磺胺类抗生素—磺胺二甲氧嘧啶(SDM)在畜牧业中使用广泛,研究者们已经在许多的湖泊、地表水、饮用水中检出。水体中的残留抗生素不断富集,会影响生态系统平衡和人类身体健康,严重的会引起致残、致畸、致突变。然而,传统污水处理工艺无法有效处理抗生素废水,高级氧化
学位
近年来,氟烷基化合物在材料科学,农业化学和药物化学中逐渐受到重视。据统计,2018年和2019年美国食品药品监督管理局(FDA)批准的新药中有近30%-40%含有机氟单元,而在十年前却仅有17%左右。与非氟化药物相比,含有C-F键的药物通常具有更高的代谢稳定性和体内亲脂性。因此,如何高效、便捷的向有机分子中引入氟原子和含氟基团已经成为目前科学界的研究热点。在众多含氟基团中,由于三氟甲基(-CF3)
学位
本文设计了三种壳聚糖(CS)基水凝胶,旨在丰富拓展智能水凝胶的不同应用,将丙烯酰胺(AAm)、二氧化硅(SiO2)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)引入CS体系分别制备PAAm/CS、P(AAm-co-AMPS)/CS和P(AAm-co-AMPS)/CS-SiO2水凝胶,利用傅里叶变换红外光谱(FT-IR)和X射线衍射(XRD)对水凝胶的组分和结构进行表征,利用扫描电镜(SEM)和激光共聚
学位
有机电致发光二极管(OLED)因其结构简单、轻薄、柔性等优点一直是业界和科学研究的热点,特别是影响OLED器件稳定性的因素,日益受到广大学者的关注。作为典型的电致发光器件,输入功率除了部分转化为光能,另一部分以晶格振动和串联电阻方式转变成热。器件过高的温度会分解有机层材料、破坏器件结构,引起亮度、电流分布不均等一系列问题。因此分析OLED器件的散热机理,并通过不同封装方式优化器件结构,改善其散热性
学位
水稻是世界上最重要的粮食作物之一,酸性土壤中的铝胁迫严重限制了水稻生长和作物产量。栖息在根际的细菌能够通过多种不同的机制减轻非生物胁迫对植物的影响,研究根际微生物对水稻耐铝功能的调节机制是维持酸性土壤中水稻正常生长和未来通过微生物调控促进谷类作物在酸铝条件下健康生产的必要理论基础。本研究基于中国主要水稻产区土壤样本和实验室水稻盆栽实验,探究了不同土壤铝胁迫条件下根际微生物与水稻的相互作用,利用转录
学位
中国正加速进入老龄化社会,这一趋势为市场带来红利的同时,也对社区老年服务提出新的要求。随着信息技术的广泛应用,互联网、大数据、人工智能等深刻地改变着现代老年人的生活方式。如何拓展老年智能化服务市场,使老年人充分享受社区生活,是推动满足老年人美好生活需要的智能化社会建设过程中的关注重点。社区老年活动中心作为老年人的日常活动场所,是社区老年服务的重要组成部分,社区APP将聚焦用户在老年活动中心的高频活
学位
离心泵在国民经济及国防军工领域具有重要的应用,但部分关键装置用泵技术尚受制于人。离心泵复杂的内部流动是制约其水力性能优化及稳定性提升的关键因素,深入挖掘泵内流动的流场特征是提升离心泵水力性能及流动稳定性的重要基础。基于此,本文提出从流场分解的角度出发对离心泵内复杂流场特征及水力性能优化进行研究。采用本征正交分解(POD)与动态模态分解(DMD)方法分析了离心泵内复杂流场特征,提出了基于聚类算法的自
学位
近年来,由于半导体量子点(QDs)优异的光学性能使其在分析传感领域具有显著优势。本论文利用半导体QDs的荧光特性和电化学发光性能,构建了荧光手性传感器及电化学发光手性传感器,用于识别多种氨基酸对映体。本论文主要分为以下三个部分。通过一步水热法制备了具有蓝色荧光的二硫化钼量子点(Mo S2 QDs),基于手性金纳米粒子(Au NPs)对Mo S2 QDs荧光的内滤效应(IFE),提出了一种高灵敏的荧
学位