论文部分内容阅读
智能电网是当今世界电力系统发展变革的最新动向和发展趋势。智能化电器是智能电网非常重要的组成部分,智能电网的建设势必带动智能化电器的发展。为了满足智能电网对智能化电器的要求,提高低压电器智能化技术研究水平。本文对交流接触器、电动机保护器、控制与保护集成电器(CPIS)的智能化技术进行了深入研究,从而为提升低压电器智能化研究水平做出积极贡献。主要研究内容如下:一、本文从研究意义与背景的角度介绍了智能电网的概念及特点,阐述了智能化电器与智能电网的关系,并分别从智能控制、智能保护、智能控制与保护集成三个方面介绍了智能控制与保护电器,电器智能优化设计技术,电器动态测试技术等研究概况与现状。二、通过对电磁系统的不同优化方法,特别是遗传算法和人工鱼群优化算法的优缺点进行分析,采用基于遗传算法的人工鱼群优化算法进行低压电器电磁系统的优化设计。本文详细介绍了基于遗传算法的人工鱼群优化算法的基本特点、计算思路、计算方法,以及该算法在本文中的应用。将该算法应用于本文各种电磁电器的优化设计中,取得了良好的效果,为各种电器实现相应功能奠定了基础。三、对采用图像处理的电器动态特性测试装置的图像处理技术进行深入的研究,提出图像处理技术的改进方法,提高了测试装置的应用效率。本文详细介绍了基于图像与改进处理方法的电器动态测试技术和电器动态测试过程图像处理的步骤、方法及注意事项。利用该测试装置对本文所设计的各种电器进行动态测试,验证了优化设计的可行性。四、提出适应统一坚强智能电网,具有智能化功能设计、运行(包括控制、保护与调节)与测量的电器智能化技术新思路。本文研究实现了包括智能优化设计、稳定可靠的零电流分断控制、首开相基本零电压接通、状态检测与故障诊断、节能、通信、准确的动态特性测量等交流接触器智能化的关键技术,从而大幅提高了交流接触器智能化研究水平。本文通过零电流分断原理、零电流分断失败原因的分析,采用智能优化算法对电磁动作机构进行优化设计,实现了动作机构快速释放,从而大幅度减小机构分散性对三相触头特别是首开相触头零电流分断准确性与稳定性的影响,提高了零电流分断的可靠性,从而大幅提高了交流接触器智能化研究水平。本文提出分相智能交流接触器方案,并对三相触头不同步智能交流接触器与分相智能交流接触器进行比较分析。五、采用智能优化设计算法对铁心斜极面的交流电磁系统进行深入地设计与分析。通过对平极面和斜极面铁心交流接触器在不同斜角度下的吸力特性进行计算与分析,提出了智能斜极面交流接触器的结构方案。该方案与平极面相比,其用铜量与用铁量大幅减小,而且具有更好的动态特性与更高的零电流分断准确性与稳定性,从而充分表现了斜极面交流电磁系统的优越性,为铁心斜极面电磁系统的广泛应用奠定基础。六、介绍了智能电动机控制与保护电器的组成与电动机保护技术的现状,重点对智能电动机保护技术与智能电动机控制与保护电器的研制进行了深入的探讨,并开发了智能电动机保护器产品。七、提出了基于快速电磁斥力机构,以桥式双断点触头系统接触器结构为本体的分相智能控制与保护集成电器的物理模型。该电器模型实现了接触器频繁操作、电动机保护与短路故障保护等功能与结构的集成。本文重点介绍了触头系统电动斥力与快速电磁机构斥力的计算方法,对短路故障状态下触头系统电动斥力与快速电磁斥力进行仿真。在基于电流形态小波与电源电压变化率的短路故障早期检测基础上,对该电器在不同短路电流、不同参数情况下多种机械力与电磁力综合作用的动触头位移轨迹进行了仿真与分析。从而在该物理模型的基础上,建立了基于电流形态小波与电源电压变化率的短路故障早期检测技术、基于快速电磁斥力机构的综合机械与电磁原理的触头短路故障快速动作并限流的数学模型。仿真研究表明,该智能控制与保护集成电器技术具有非常好的限流特性,从而为研发高性能的智能控制与保护集成电器奠定理论基础。