六角二维磁性半导体的第一性原理研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:king_hxr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子计算、高频器件、高密度信息存储等应用的爆发式增长,将在高集成度、低功耗功能材料领域激发更先进的技术需求。面对晶体管和存储单元的持续小型化,对二维磁性半导体的探究将是一个重要的方向。二维铁磁半导体有望使半导体和磁性材料的功能互补。然而,根据Mermin-Wagner定理,二维各向同性海森堡模型在有限温度下的自发磁化是不存在的,再加上铁磁性与半导体兼容性不强,目前,本征的范德华二维铁磁半导体合成的种类并不多。所以本文采用了第一性原理计算方法,预测了过渡金属硫化物CrGeS3的稳定性和交换相互作用机制;设计并探究了居里温度接近室温的“双面”VXY(其中X、Y=Cl、Br和I,且X≠Y),分析了铁磁—反铁磁交换作用的强度随应变的变化情况;此外还探究了单层双过渡金属碘化物V2Cr219的稳态、亚稳态的稳定性和居里温度,可作为自旋电子学器件的备选材料。首先,我们预测了单层CrGeS3的电子结构性质和磁性。单层CrGeS3基态是铁磁半导体。其铁磁性主要是来源于最近邻Cr原子之间通过S原子介导的超交换相互作用。计算发现Cr原子d轨道上二重简并eg与S原子p轨道杂化作用较强,而Cr原子三重简并t2g与Ge原子p轨道杂化作用较强。也正是这两种杂化作用对导带底和价带顶的贡献最大。另外它较低的剥离能使其在实验上通过机械剥离制备。最后平均场方法估算居里温度为161 K。其次,在单层Ⅵ3的基础上,通过打破面间对称性构建了“双面”VXY,并用蒙特卡洛方法模拟海森堡模型预测其居里温度高达240 K。通过电子性质和磁性的分析,高居里温度的原因主要是面间对称性被破坏,导致了 Cr原子d轨道上二重简并的eg态与最近邻的另一个Cr原子的三重简并态t2g之间交换能隙变小。另外,在“双面”VXY中铁磁性能够通过双轴应变进一步增强,使其居里温度接近室温。随着拉伸应变的增加,直接交换—超交换相互作用在同时减弱。并且直接交换强度比超交换下降得更快,这也是铁磁性在拉应变下增强的主要原因。最后,我们将单层Ⅵ3和CrI3进行纵向堆垛,同时舍弃中间一层I原子,构建了单层的双过渡金属碘化物V2Cr2I9。通过不同I原子排列和上下过渡金属原子层的相对位错,得到了七种可能存在的结构。并进一步发现其中两种稳定结构都存在较强的磁性,特别是稳相的居里温度高达273 K。原因可能是稳相V2Cr219存在很强的磁各向异性。此外,外加横向电场的模拟计算发现仅通过改变外加电场的方向就可以调控居里温度。最后,通过双轴应变模拟计算,V2Cr2I9的居里温度在拉、压应变下都能超过室温。
其他文献
在新能源并网系统中,逆变器往往需要经过传输线并网,此时电网会呈现弱电网特性,弱电网的特点是需要考虑电网阻抗以及电网侧背景谐波对系统的影响。本文针对两种情况进行分析,分别是逆变器经感性电网阻抗并网,以及经过RLC结构的传输线路并网。两种情况都会使逆变器输出电流中出现谐振问题,而电网侧的背景谐波也会作为激励源加剧谐波谐振现象,从而恶化并网电流,使系统电能质量下降。首先,本文对L型与LCL型两种逆变器的
AC/DC变换器作为电子产品或电器设备中的核心装置而被广泛的应用。只具有单一的升压或降压特性的单相AC/DC变换器在较宽范围输入或输出电压应用场合中,存在输出电压的范围较为局限,且在电压范围内工作效率偏低的问题。单相可升降压AC/DC变换器可以解决此类问题,因此被广泛研究。本文通过将全控整流桥与Cuk变换器进行结合,得到了一种功率因数高、输入电流总谐波畸变率较小、电磁干扰较小的新型单相可升降压AC
电能在大部分用电场合下都须经过电力电子转换器才能供用电设备使用。而传统的电能转换装置会在电网中产生大量的电流谐波,带来电磁干扰进而污染电网,危害系统安全运行,严重的将造成巨大能源浪费和经济损失。故本文针对高次谐波的危害,对PFC(Power Factor Correction)相关技术进行研究。在PFC技术的发展过程中,单相PFC电路由于存在功率等级的限制,常无法满足工业领域应用的要求,三相PFC
随着传统汽车尾气排放污染以及温室效应的愈发严重,各个国家大力发展电动汽车和清洁能源的趋势已经十分明确。在当今电网智能化的不断发展下,探究电动汽车和光伏设施的有效结合方式,可以从根本上降低碳排放从而达到环境友好。电动汽车光伏充电站是把光伏系统和充电设备二者相联系整合的有力途径,需要制定完善合理的运行策略以及能量管理方法,在最大程度上保障用户充电要求的前提下,降低充电行为对电网的影响。同时考虑分时电价
近年来,分数阶微积分研究在科学和工程等众多领域不断发展且得到了学者广泛的关注。相较于整数阶,分数阶具有更好的时间记忆性,且可利用较少的参数更准确地模拟粘弹性材料的本构模型。但是,最新研究发现,在大变形条件下,分数阶本构模型无法高精度模拟粘弹性材料的蠕变行为。对此,学者们提出了用变分数阶模型来描述粘弹性材料在工程中的动力学问题。然而,在目前粘弹性材料变分数阶模型的研究中只着重于模型的建立。在变分数阶
随着控制科学领域研究的深入,线性系统中的控制方法已难以满足复杂系统的控制设计需求,因此系统控制的非线性方向研究日益成为关注焦点。在非线性系统中,非线性互联系统是非常有代表性的一类系统,广泛存在于电力、通信等领域。系统中存在的高耦合互联项、非线性环节、控制输入受限等问题,对系统的控制器设计和稳定性保证带来严重影响,大大增加控制器设计的复杂性与困难度。主要针对一类非线性互联系统,采用自适应动态规划方法
随着传统能源短缺和环境恶化问题的日益严重,节能减排、充分开发和利用新能源成为解决问题的关键。于是,电动汽车和微电网得到大力发展和应用。随着电动汽车规模的不断增长,将其接入微电网可缓解配电网的压力,但电动汽车充电负荷随机性强,将会加大微电网能量优化难度。本文首先分析电动汽车充电站负荷特性,通过精准的预测模型对日负荷进行提前预测。然后,建立含电动汽车的微电网能量优化模型,并根据日充电负荷预测值进行优化
自从在实验中发现超冷原子自旋—轨道耦合玻色—爱因斯坦凝聚后,因其参数具有高度调控性成为了量子模拟和量子操控的一个重要试验平台。而最近的研究发现当系统的哈密顿量满足宇称时间对称性(Parity-Time-symmetry,简称(?)(?)对称性)时,在一定参数取值范围内具有实数本征谱,玻色—爱因斯坦凝聚是研究(?)(?)对称性的一个崭新领域。本文主要研究了满足(?)(?)对称的周期势下的玻色—爱因斯
冷原子物理体系中自旋轨道耦合玻色–爱因斯坦凝聚体(Bose-Einstein Conden-sates,BECs)是探索量子力学未知领域的重要实验操作平台,不断有新奇的原子物理行为被发现,为人们开阔出了一个深厚的研究工作领域。其中自旋轨道耦合BECs的基本性质的研究可以通过系统地研究各种孤子的一系列性质来进行探索和发现。首先,本文构建准一维的自旋轨道耦合BECs理论模型,利用变分法和虚时间演化方法
近年来,随着科学技术的高速发展,在高新技术领域,人们对电子器件的要求变得越来越高,尤其是在功能和体积方面。自旋电子学材料利用了电子电荷和电子自旋的自由度,这大大提高了数据的传输和存储的效率,因此它在新一代电子器件中占有重要的地位。由于自旋电子学材料中的磁性半金属和磁性半导体材料具有稳定的磁性质和较高的自旋极化率,故成为新一代自旋电子学器件的理想候选材料。本文采用了基于密度泛函理论的第一性原理计算包