论文部分内容阅读
煤焦油渣是一种有毒、有害的固体废弃物,具有很大的危害性。但是由于它含有大量的固定碳和有机挥发物,且发热值较高,因而又是一种有用的二次资源。如果对其处理不当,不仅会造成环境污染,而且还会导致资源浪费。因此,有必要对煤焦油废渣进行恰当的处理以回收和利用其中有用的资源。目前,尽管有一些煤焦油渣处理技术已经实现工业化,但是仍然存在着诸如能耗高、利用率低、设备成本高及易造成二次污染等问题。因而,煤焦油渣,尤其是气化煤焦油渣几乎未得到合理的处置,而是随意堆积在厂区。这样做不仅给周围土壤、水、空气等环境和附近居民带来了危害,还造成了资源的巨大浪费。针对以上问题,本文以中煤图克废弃的气化煤焦油渣为原料,对其进行了一系列较详细的研究,包括煤焦油渣的组成、基本理化性质、燃烧特性以及燃烧前释放物毒性等的分析,分离煤焦油渣,制备粉末活性炭及其对含酚废水的处理等内容。通过这些研究得出如下结论:1.煤焦油渣含有较高的固定碳、挥发份和发热量,是一种潜在的有用资源。气化煤焦油渣中存在芳烃结构有机物,且多为不同程度的PAHs缩合结构,甲苯萃取液中EPA优先监控的多环芳烃类物质相对含量总和达到61.68%;其中一些有机组分容易挥发,加热后残炭率约为43%。2.气化煤焦油渣在燃烧过程中约有质量分数为30%的物质未燃烧而是以气态形式逸出并流入空气;当温度达到400℃以后样品开始燃烧并放出大量的热,最后留有8%左右的燃烧灰渣。其中,升温速率会产生传热滞后现象导致燃点升高。燃烧前50℃恒温3h释放物的二氯甲烷萃取液中可检测到30多种有机物质,其中含有的4种EPA优先监控的PAHs总相对含量约5.69%,总收集萃取量达0.039mg/g GCTR,且萘的含量最多为0.023mg/g GCTR;燃烧前360℃恒温1Omin释放物的二氯甲烷萃取液中可检测到108种以上的物质,含EPA重点监测的8种PAHs总含量超过36.37%,总收集量达20.01mg/g GCTR,其中菲最多,达到5.60mg/g GCTR,其次为荧蒽,含量为4.79mg/g CGTR。释放物中含有大量具有较高沸点的有毒致癌物质,且主要是来自气化煤焦油渣中的焦油组分。3.从22种萃取溶剂中优选出低毒、经济、沸点低且萃取效果好的乙酸乙酯、乙酸丁酯、碳酸二甲酯作为分离气化煤焦油渣的萃取剂。选用碳酸二甲酯、乙酸乙酯、乙酸丁酯溶剂进行超声萃取,在溶剂(V/mL)和气化煤焦油渣(m/g)比为8,超声80min,常温下萃取4次时三种溶剂达到最高的萃取效果分别为32.08%、29.25%、29.24%,其中乙酸丁酯的萃取率为最高;选用乙酸乙酯对气化煤焦油渣进行搅拌萃取,在溶剂(V/mL)和气化煤焦油渣(m/g)比为2,搅拌30min,常温萃取3次即可达到30.58%的萃取率。4.通过红外、热重及气质联用等表征手段对乙酸乙酯分离产物进行分析表明,乙酸乙酯可提取出一定环数的芳香烃,且主要为2~4环等低聚结构的芳烃,分离渣粉的芳烃结构聚合度和稳定性都较高;与气化煤焦油渣原样、萃取焦油相比,将分离渣粉作为燃料具有燃点低、燃烧充分、放热量大及更环保的优点;最后依据实验结果初步拟定出能耗低、分离效率高的萃取分离及溶剂回收的工艺。5.分离渣粉制备粉末活性炭的优化操作条件为:KOH和分离渣粉质量比为4、450℃下炭化30min、850℃下活化30min。制得的粉末活性炭的碘吸附值高达2023.11mg/g,比表面积高达1981m2/g,孔容达0.92cm3/g,平均孔径为2.75nm,属微中孔发达的活性炭;制得的活性炭具有磁性且粒度较细,可均匀地分散在溶液中,吸附3分钟刚果红溶液的颜色由红色变为浅粉色,8分钟溶液接近无色,利用一定的磁场可实现活性炭的快速分离及回收;利用XPS、XRD对分离渣粉和活性炭进行了分析。结果显示,两种样品表面主要含有C、O、N、Fe、Ca及Si元素,且活性炭中含较多的Fe,这可能是在高温条件下分离渣粉中发生了 Fe2O3+C→Fe+CO2的反应,使得的活性炭中的Fe的相对含量增加,磁性增强。6.制得的粉末活性炭对水中酚的脱除速率极快,且可通过外磁场对其进行快速回收。在常温、5分钟内、pH=7.3的条件下,用0.1g粉末活性炭可将50mL废水中的苯酚由100mg/L降到3mg/L以下。其吸附动力学曲线符合拟二级动力学方程,拟合得到的平衡吸附量数值Qe和实验测试得到的值 48.66 mg/g(296.15K)、48.56 mg/g(313.15K)、47.40 mg/g(328.15K)都较为接近;其吸附过程更符合Freundlich吸附等温模型,拟合得到的参数KF=24.08、n>1,这表明粉末活性炭对水中苯酚吸附能力强、吸附速度快、吸附容量大,且吸附过程为放热过程。