求解时间相关问题的基于长球波函数的谱方法

来源 :浙江大学理学院 浙江大学 | 被引量 : 0次 | 上传用户:nvhuang123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
谱方法是求解偏微分方程的重要数值方法。它的主要优点是高精度,这使得该方法能够与有限差分、有限元一起而成为偏微分方程的三大数值方法之一。   本文利用基于长球波函数的谱方法讨论了时间相关问题的数值求解。首先介绍了谱方法的历史背景,发展现况及基本的理论知识。作为一种从全局上来逼近的数值方法,当求解问题很光滑时,谱方法求解可以指数级地很快收敛于精确解。   然后讨论了长球波函数的概念和性质,用长球波函数来做作为谱方法的基函数,有许多优点:在[—1,1]和(—∞,∞)区间上都具有正交性,随着带宽系数c的变化具有可调性,相比勒让德多项式和切比契夫多项式更加均匀,等等。在相关的数值计算中重点讨论了长球波函数,数值积分公式和微分矩阵的计算。   最后对于时间相关问题,讨论了基于长球波函数的谱方法同样具有谱精度;CFL条件对其时间步长的影响,而基于长球波函数的谱方法的空间离散格式具有拟一致性,可以减少其对时间步长的限制;并通过一些发展方程的数值实验验证了结论。
其他文献
本文研究了超空间上弱半、弱连续的性质,获得了以下结果: 1(1)设(X,),(Y,)是拓扑空间,f:X→P_0(Y)是集值映射,则下列条件等价:(i)f是弱下半连续(ii)对A,f*(A)(f*(A))o(iii
纵观人类历史,传染病一直严重威胁着公众健康和社会发展.因此,研究疾病传播的动力学机制,进而制定控制疾病暴发的策略,就显得至关重要.在流行病学研究中,数学模型已经成为揭
鸡西矿业集团公司张辰煤矿西三采区3
在现实世界中,人们有时需要将自己的某些权利委托给可靠的代理人,由代理人代表本人行使这些权利,在这些可以委托的权利中包括人们的签名权利。在信息社会中也会遇到委托签名
基因逻辑网络是国际上引人注目的新兴领域,已经渗透到数理、生命、工程等众多领域。数据分析和理论方法成为理论生物学研究中探索生物机理的重要途径,也是人类认识自然科学世界
本文的主要目的是研究含有不连续非线性项的椭圆方程-Δu+λu=f(x,u)u,x∈RNU∈H1r(RN),λ>0(p)的正解的存在性.其中r=|x|,N≥3,H1r(RN)={u∈H1(RN)|(u(x)=u(|x|)},函数f(x,u):RN×R→R是
令E是严格凸空间,F是任意赋范线性空间。本文给出了l1(E)到F的单位球面之间的满等距映射V0的表现定理。在满足对任意i∈N,存在线性子空间Fi()F,使得V0(S(E)×ei)=S(Fi)的条件下,
学位
随着社会多样性的发展,人们对于美丽的面部有着更高的追求,始自于上世纪90年代的人脸美化的研究近年来越来越受重视.目前,人脸美化已经吸引了来自不同领域的研究者,如感知学
本文主要研究了带p-n结的半导体漂流扩散系统的拟中性极限问题,主要研究掺杂分布函数变号的情况的数值解。 本文研究的内容分三部分:第一部分是对于变号情况下的掺杂分布函