【摘 要】
:
聚合物胶束作为新型药物递送系统具有良好的应用前景,但是传统的胶束存在稳定性差和释放不可控等缺点,极大地限制了其应用。增强聚合物胶束的稳定性和受控释放性被认为是解决其应用问题的一个突破口。本论文基于肿瘤组织内弱酸性和高酯酶浓度环境,设计并制备了一种新型两亲性嵌段聚合物。以疏水性抗癌药物喜树碱(CPT)作为模型药物,通过透析法制备了两种可逆共价键交联的聚合物胶束。研究了胶束的形貌、粒径大小和分布、储存
论文部分内容阅读
聚合物胶束作为新型药物递送系统具有良好的应用前景,但是传统的胶束存在稳定性差和释放不可控等缺点,极大地限制了其应用。增强聚合物胶束的稳定性和受控释放性被认为是解决其应用问题的一个突破口。本论文基于肿瘤组织内弱酸性和高酯酶浓度环境,设计并制备了一种新型两亲性嵌段聚合物。以疏水性抗癌药物喜树碱(CPT)作为模型药物,通过透析法制备了两种可逆共价键交联的聚合物胶束。研究了胶束的形貌、粒径大小和分布、储存稳定性能,以及胶束的药物包载和酯酶、p H响应性药物释放机制。通过开环反应和氧化反应制备单体3-(甲基丙烯酰氧基)-2-氧丙基苯甲酸酯(BOOPMA),再利用电子转移活化剂再生-原子转移自由基聚合(ARGET ATRP)合成嵌段聚合物聚(3-(甲基丙烯酰氧基)-2-氧丙基苯甲酸酯)-b-聚(甲基丙烯酸2-羟基丁酯-co-甲基丙烯酸单甲氧基聚乙二醇酯)[PBOOPMA-b-P(HBMA-co-PEGMA)]。该聚合物在水溶液中自组装形成球形胶束,疏水PBOOPMA嵌段构成胶束内核,利用疏水作用和π–π共轭作用包载CPT;PBOOPMA上的酮基官能团提供可逆交联位点,分别与两种小分子交联剂己二酸二酰肼(ADH)和1,2-双(2-氨基乙氧基)乙烷(EDE)交联形成酰腙键和亚胺键;亲水性嵌段P(PEGMA-co-HBMA)形成胶束外壳,有利于提高胶束稳定性。PBOOPMA-b-P(HBMA-co-PEGMA)交联胶束具有控制释放药物性能。酰腙键和亚胺键交联的胶束在p H 7.4条件下均释放缓慢,96 h累积释放量分别为9.32%和15.6%,交联结构有效的抑制了药物的扩散和释放。而在p H 5.0条件下,酰腙键和亚胺键断裂,胶束迅速去交联瓦解,释放明显增大,96 h时累积释放量分别达到53.0%和70.4%。两种交联胶束的释放均受扩散控制,p H 7.4时由扩散-侵蚀过程共同控制;p H 5.0时,酰腙键交联胶束在第一阶段是反常传输机制,第二阶段(8-96 h)受扩散-侵蚀过程共同控制。研究结果对于聚合物的结构设计和交联胶束的构建具有一定的借鉴意义。
其他文献
目的 探讨正念冥想对慢性阻塞性肺疾病(COPD)患者呼吸困难及焦虑抑郁的改善效果。方法 选取该院2021年1月至2022年1月收治的COPD稳定期患者100例,随机分为对照组与观察组各50例。两组均采取传统护理措施,观察组在此基础上增加正念冥想干预。比较两组干预前后焦虑抑郁量表评分及呼吸困难分级情况。结果 观察组呼吸困难1级占比44.0%(22/50)高于对照组的12.0%(6/50),差异有统计
近年来,医疗、养殖业、制药业中的抗生素滥用及水污染问题突出,抗生素废水的处理刻不容缓。吸附法是处理抗生素废水的有效方法之一,其中吸附剂的选择非常关键。生物质基多孔炭具有原料来源丰富、成本低、孔道丰富等优点,其作为抗生素吸附材料受到了广泛的关注与利用。然而,生物质基多孔炭吸附剂在实际应用中还存在产率低、使用强腐蚀性活化剂、孔道连通性差以及对不同分子量抗生素的适用性差等问题。关于多孔炭的孔道结构对不同
碳材料负载Pt纳米颗粒被广泛应用于热催化和电催化等重要的工业催化反应。通过调节金属颗粒与碳载体之间的相互作用(Metal-Support Interaction,MSI)不仅可以改善催化剂的反应活性与产物选择性,还可以提高稳定性。由MSI诱导产生的几何效应与电子效应往往相互纠缠,无法被解耦而分析单一效应的影响。因此,本文通过两步法负载工艺,首先制备具有固定形貌的Pt颗粒,然后负载在不同碳载体上进而
紫外光固化是一种高效、环保、节约能源的技术。然而,在厚的光固化涂层中,紫外光的穿透能力差,并且会被固化样品中的多种成分吸收或反射,使得紫外光的穿透能力进一步降低。现有的解决紫外光固化深度的方法都存在一定的缺陷。本论文利用能光致发光的氧化锌纳米粒子(ZnO NPs)光引发剂,可以保持紫外光固化优点的同时提高光固化深度;并通过表面改性改善ZnO NPs的发光和分散性能,进一步提高光固化深度;还探究了发
中国石油信息化建设的持续推进,为数据治理、汇聚和共享奠定了良好的基础,如何挖掘数据资产的价值是未来信息化工作的核心目标。鉴于集团公司数字化转型、智能化发展的背景,本文以石油钻井工程造价管理为业务场景,以大数据分析为核心技术,研究和论证了石油钻井工程造价管理决策支持系统的目标定位、业务流程、数据范围、系统功能和管理创新性。
许多小分子抗癌药物水溶性差,毒副作用强,需要利用药物载体进行输送。木质素良好的生物相容性及天然的两亲性结构,为构建纳米载药系统输送抗癌药物提供了便利。然而传统的纳米载药系统存在选择性差、泄漏量高等问题。由于肿瘤细胞和正常细胞存在p H环境差异,可以通过制备p H响应型的纳米载药系统,满足在肿瘤特定部位释药的需求。木质素含有丰富的官能团,易于化学改性,可以通过改性赋予木质素p H敏感性制备p H响应
随着我国经济和工业生产能力的快速发展,噪声越来越容易被大众所感知,并开始危害大众的身体健康。硬质聚氨酯泡沫塑料作为一种高分子材料,可以通过配方调控制备得到吸声能力良好的开孔型泡沫塑料。然而,较高开孔率下的聚氨酯硬泡力学性能衰减严重,并且聚氨酯由于本身的易燃性亦具有较大的安全隐患。因此,有必要开发力学性能、吸声性能和阻燃性能综合较优的聚氨酯硬泡以满足使用需求。首先,本文探究了多元醇复配对聚氨酯硬泡力
高纯度及具有生物活性的多肽/蛋白质是蛋白质分析、应用及生物技术发展的基础。因此开发出一种新型、高效、负载量大的固定化金属亲和色谱(Immobilized metal affinity chromatography,IMAC)固定相材料对于实现蛋白质的高效分离纯化有着重要意义。针对目前含组氨酸蛋白分离技术中IMAC固定相材料传质阻力较大、处理效率较低、缺乏有效的分离分析方法等问题,本课题以IMAC理
镁离子电池因其独特的特性和优势而成为极具应用前景的电化学能源存储器件。与金属锂相比,金属镁具有更高的理论体积容量、更丰富的地壳储量和更高的安全性。然而,镁离子电池的商业化还受制于两方面:一是由于Mg2+带有两个电荷,具有较高的极化特性和扩散势垒,导致Mg2+在电极材料中具有较差的嵌入/脱出动力学。二是镁和传统电解液(常规镁盐溶于极性有机溶剂)不兼容,由于电解液的还原会在Mg表面形成一层致密的钝化膜