基于特征融合的交通信号灯识别方法研究

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:sddcx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
交通信号灯检测和识别是无人驾驶和辅助驾驶的关键技术之一,有着广阔的应用前景,近年来受到国内外众多学者的广泛关注。随着计算机计算能力的不断提高,各类传感器的成本不断降低以及深度学习技术的蓬勃发展,关于特征融合的研究越来越多,且在目标识别领域得到了广泛的应用,因此基于特征融合的目标检测方法在交通信号灯识别中有着广泛的应用前景和研究价值。本文研究了基于特征融合的交通信号灯识别方法,结合交通信号灯的特点提出了基于视觉显著性及多特征融合的交通信号灯识别方法。探究了传统手工特征与深度学习特征融合的方法,此外对端到端的目标检测模型SSD进行了改进和优化,提出了基于改进SSD模型的交通信号灯识别算法,通过网络跨层连接实现特征融合提高模型对像素占比较低的交通信号灯的检测识别能力。本文工作主要包括:(1)提出了基于视觉显著性及多特征融合的交通信号灯识别方法。首先利用谱残差模型确定信号灯候选区;然后提取候选区的颜色、HOG、LBP直方图特征,并进行加权融合;最后利用支持向量机分类识别候选区,剔除背景区域,识别交通信号灯状态。在无人车车载相机采集数据集上的实验结果表明,该算法能取得较好的识别效果,且基本满足实时要求。(2)在传统手工特征融合的基础上研究了手工特征与深度学习特征融合的方法。通过卷积神经网络提取交通信号灯CNN网络层特征,另外提取出交通信号灯图像的Gabor纹理特征、Canny边缘特征以及LBP纹理特征,采用神经网络融合手工特征与CNN网络层特征进行交通信号灯状态的识别。在车载相机采集的数据集、LISA数据集上进行了实验验证,相比多个传统手工特征融合后利用SVM分类,CNN能够提取更丰富的特征,且神经网络融合多特征的效果更佳,耗时更短。(3)对基于端到端的目标检测模型SSD(Single Shot Multi Box Detector)进行了改进和优化,提出TR-SSD模型。该模型把SSD的主干网络由VGG替换成了Inception_V3;针对交通信号灯为小目标的特点,在识别时将网络深层特征和浅层特征进行融合;模型的预测模块修改为目标位置、置信度和信号灯状态三个输出。改进的网络模型在LISA数据集上m AP达到了98.6%。
其他文献
近年来,无线传感器网络凭借其灵活性强、布置简单等特点,在结构监测领域引起了国内外广泛关注。通常情况下,结构损伤监测所产生的数据量十分庞大,无线传感器网络传输数据时容易产生吞吐量不足、访问冲突等瓶颈问题,使得诊断结果往往伴随着较大偏差,无法直观反映出损伤的具体位置。针对上述问题,本文以面向结构监测的无线传感器网络及损伤诊断方法为研究方向,依据分布式采集、无线传输、终端处理的设计原则,从网络拓扑结构、
近年来,随着国家各项水条例、政策的实施,我国地表水污染得到了有效控制,水体质量有了较大幅度改善。然而,传统水处理方式存在高能耗和二次污染问题,且对难降解化学品的处理能力有限。光催化技术采用清洁、丰富的可再生太阳能资源激发半导体的氧化还原能力进行污染物降解,在水污染治理领域展现出巨大潜力。目前,传统光催化剂仍存在可见光利用率低、光生电子-空穴复合率高等问题,限制了光催化技术的实际应用,开发新型、高效
轨迹规划算法的制定是需要根据机器人的应用场合而因地制宜的,传统的工业机器人轨迹规划方法可能并不适合轨道式摄影机器人。所以本文以研究出一套完全适用于轨道式摄影机器人的轨迹规划算法为研究目标,做了以下的研究工作:(1)对用户需求进行分析,确立研究重点:构造G~2连续的笛卡尔空间轨迹。对完全自主产权的轨道式摄影机器人进行结构分析,并分析摄像机拍摄手法相关的Zoom、Focus的物理意义,将其虚化为两个运
采用无人环境侦察车代替作战人员在各种充满未知性和危险性的场合执行侦察任务成为趋势,本文将研究背景选定为战场环境侦察无人车的避障算法研究。经过对比分析战场环境的特点,选定人工势场法作为无人环境侦察车的基础避障算法,分析避障共性问题后,得出了该算法在实际工程使用中存在的问题,针对局部最小点问题,提出了基于共轭梯度搜索的“米”字坐标试走法,用于解决局部最小点问题;针对目标点不可到达问题,提出在目标点附近
随着工业自动化和智能制造的发展,工业机器人越发普遍,并且大构件三维形貌测量的需求也越来越大。本文引入手眼标定技术,将单目线结构光和双目面结构光的三维测量方法与工业机器人相结合,实现了高精度大构件三维形貌测量。本文的研究内容主要分为线结构光和面结构光两个部分,具体内容和创新性如下:(1)基于线结构光和工业机器人的大构件三维形貌测量方法。线结构光系统具有结构简单、对测量环境要求低的优点。本文对线结构光
无人驾驶机器人车辆是实现车辆自动驾驶的一种新方式,不同于线控自动驾驶车辆。其最大特点是无需对车辆进行任何改装,可以安装在多种不同类型的驾驶室内,适用于日常行驶、车辆性能测试、军警领域等。本文在课题组对驾驶机器人的研究基础上,研究了驾驶机器人车辆的智能换挡策略。首先,介绍了驾驶机器人车辆基础结构,并建立了驾驶机器人车辆纵向动力学模型。然后,研究了考虑负载波动的驾驶机器人动力学特性。建立了考虑负载波动
随着消费者对速冻食品的质量要求越来越高,螺旋速冻装备的结构越来越复杂,对其进行维护相对困难。研究智能的螺旋速冻装备远程监控系统对提高其安全性具有极为重要的应用价值。本文以四方科技集团股份有限公司研发的全自动自堆积式螺旋速冻装备为研究对象,针对其功能需求开发了全自动自堆积式螺旋速冻装备监控系统,进行了相关硬件、软件和故障诊断分析算法的设计,并设计相应测试用例验证了监控系统的可靠性。主要研究内容包括:
近年来,陆基无人作战平台一直是军用机器人领域研究的一大热点,其中轮式与履带式平台在技术上较为成熟,并已得到了广泛应用。然而,大多数的野外作战环境仍为山地与沟壑,这对于需要平坦地面的轮、履式机器人而言,依旧是影响其功能发挥的障碍。从自然界的角度来看,步行生物尤其是四足步行生物以其独有的运动结构与运动规律,可以在较大负载的情况下完成在非连续地面上的快速移动。因此,为了补足移动机器人在非连续地面上运动的
空间弹头识别在国家防御系统中占着至关重要的地位。中段是弹头整个飞行过程中最有利于目标识别的一个阶段。随着雷达技术的发展以及科技的进步,微动特征作为弹头运动的固有特征,越来越多的应用于弹头的识别中。窄带雷达具有探测距离远,对目标微多普勒特征敏感等优势,因此具有极大的识别潜力。根据上述背景,本文基于弹头的微动特征,通过卷积神经网络进行训练,并不断改善网络结构以及增加有效特征来提高对弹头的几何结构和进动
激光引信易受云雾干扰,无线电引信易受箔条云干扰,两种干扰都会导致引信虚警。采用激光/无线电复合体制引信,通过信息融合可充分发挥各自优点,提高引信抗干扰能力。出于激光/无线电复合引信信息融合及信号处理算法研究的需要,本文对复合引信多通道激光回波脉冲信号和多普勒信号同步采集技术进行了研究。主要工作如下:基于周视激光引信和脉冲多普勒无线电引信的工作原理,分析了激光引信回波和无线电引信回波特征,设计了基于