【摘 要】
:
设α为无理数,称实数μ是α的无理测度,若对于任意的ε>0,存在q0(ε)>0,使得对所有满足q≥q0(ε)的数组(p,q)∈Z2,我们有 |α-p/q|≥q-μ-ε 设α0,α1,…,αn为 Q上的一组
论文部分内容阅读
设α为无理数,称实数μ是α的无理测度,若对于任意的ε>0,存在q0(ε)>0,使得对所有满足q≥q0(ε)的数组(p,q)∈Z2,我们有 |α-p/q|≥q-μ-ε 设α0,α1,…,αn为 Q上的一组线性无关的实数,称ν为α0,α1,…,αn的线性无关测度,如果对任意的ε>0,存在H0(ε)>0,使得对所有的 (p,q1,…,qn)∈Zn+1,H=max(|q1|,|q2|,…,|qn|)≥H0(ε), 我们有 |pα0+q1α1+…+qnαn|≥H-ν-ε 我们的主要工作就是结合整超限直径,LLL算法和半无限线性规划等基础理论和算法,利用积分∫βαf(x)/g(x)dx中被积函数f(x)/g(x)的对称性特点,对多个有理数对数的线性无关测度进行了讨论,并得到了一些三个有理数对数的线性无关测度,其中α,β为有理数,f(x)。g(x)都是整系数多项式. 同时,我们还讨论了不定方程x2+4n=y11,并给出当n=3,4,5时的整数解.
其他文献
本文分别考虑带Dirichlet边界条件和周期边界条件的四阶Schrodinger方程,证明了当参数λ穿过第一临界值λ=αλ1时,该问题分歧出一个吸引子.该分析是以最近创立的新的吸引子分
在群论中,借助子群的性质去研究大群的结构和性质是一个重要的研究方向。这其中有一类问题是根据群的非循环子群的共轭类个数去研究大群的结构和性质。设G是有限群,用δ(G)表示
求解非线性矩阵方程的问题主要是通过分析所给方程参数的性质来得到方程的解.在现实生活中,方程X+A*X-n A=Q的来源相当广泛,包括控制理论,梯形网络分析,动态规划,统计和椭圆
20世纪80年代以来,通过模拟、揭示某些自然现象或过程而产生了一些新颖的启发式算法,如蚁群算法、模拟退火算法、遗传算法和禁忌搜索算法等。这些算法独特的优点和机制,引起
对二次域Q(√10)中的单位Un+Vn√10=(19+6√10)n所给出的两个递归数列{Un},{Vn}中的Pronic数,三角数,五角数,七角数问题进行研究,给出了完整的结果.作为应用,解决了与其相对于
在具有弱序列连续性质的对偶映射的实自反Banach空间中,主要研究了如下两个迭代序列:yn=βnu+(1-βn)xnxn+1=anu+(1-αn)Tynyn=βnxn+(1-βn)Txnxn+1=αnu+(1-αn)Tyn
其
近些年来随着代数学理论的不断完善和发展,Hom-代数的理论研究得到了国内外学者的广泛关注.交错代数作为一类重要的非结合代数,关于Hom-交错代数的研究也成为Hom-代数的发展
人脸识别技术就是利用计算机分析人脸图像,提取有效的识别信息来辨认身份或者判别待定状态的一门技术。由于人脸图像的特殊性,人脸识别问题不仅是模式识别领域的一个难题,同
我们知道单参数李超代数Uq(osp(1,2))和双参数李超代数Ur,s(osp(1,2))均可看作是李超代数osp(1,2)的量子变形.本文主要构造了一种更一般的量子变形,记作Uq(osp(1,2,f(K,H))).其是由E,F
数据聚类是一个正在蓬勃发展的领域,涉及数据挖掘、统计学、机器学习、空间数据库技术、商务信息等领域,可以说涉及了人类社会生活的方方面面。模糊聚类分析是将模糊理论应用到聚类分析中,为显示数据提供了模糊处理能力,在许多领域被广泛应用。FCM(Fuzzy c-means)算法是模糊聚类中的一种重要方法,它具有算法简单、局部搜索能力强且收敛速度快的特点,然而FCM算法受初始化影响较大,在迭代时容易陷入局部极