论文部分内容阅读
飞秒激光轰击靶材表面可以形成高温等离子,等离子体由原子、离子和自由电子等粒子构成,在它的生命周期中处于不稳定状态下的原子或离子会发生由高能态向低能态跃迁的现象,并且在它们进行跃迁的同时也会辐射出一定强度的等离子体光谱,该光谱不仅携带着大量的靶材元素成分及其含量的信息,而且与等离子体的形成、演化和膨胀等过程密切相关,这一光谱通常被称为激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,LIBS)。同时,瞬态产生的高温等离子向外膨胀形成羽辉,可以用于沉积与靶材同材质的薄膜或者纳米结构,这一技术通常被称为脉冲激光沉积(Pulsed Laser Deposition,PLD)。本论文基于这一思路,通过LIBS光谱研究等离子体的特性及其时空演化规律,并利用等离子体同质沉积的特点,在衬底上沉积薄膜和纳米结构。脉冲激光沉积技术作为功能强大的薄膜制备技术,在高温超导、半导体、类金刚石等多种功能薄膜和硬质陶瓷薄膜的制备上已得到充分的运用,并且在纳米材料制备上也有所进展。随着高峰值功率飞秒激光的出现,使得激光诱导击穿光谱技术和脉冲激光沉积技术步入飞秒时代。相比传统使用的纳米/皮秒激光,飞秒LIBS和飞秒PLD展现出了更加诱人的前景。本论文的研究目的是利用飞秒PLD技术制备TiO2纳米薄膜,为未来开展基于TiO2纳米结构的光催化研究奠定基础。其工作内容主要分为两个部分:第一部分是通过LIBS技术研究飞秒激光诱导钛等离子体光谱的时空演化规律,并确定等离子体温度的时间演化特性以及电子密度与激光能量的关系,掌握等离子的演化特性,对飞秒PLD实验的开展具有重要的借鉴意义;第二部分是搭建飞秒PLD系统,并利用该系统制备TiO2纳米薄膜材料,通过场发射扫描电镜和X射线光电子能谱仪分别对TiO2纳米薄膜材料的形貌和成分进行表征分析,并确定颗粒尺寸大小以及薄膜成分,接着研究薄膜的成膜过程并探索激光能量,基底温度等实验参数对薄膜的沉积速率以及质量的影响,确定最佳的实验条件,最后利用紫外-可见光谱仪探究其光学性能。通过上述实验研究,得到如下结论:(1)薄膜是由粒状TiO2颗粒组成的一种蓬松结构的材料,粒径基本上在1到100 nm范围;(2)通过探究不同沉积时间下的样品的SEM图像来分析TiO2薄膜的成膜过程,可以发现TiO2薄膜的生长模式为岛状生长;(3)样品的紫外-可见光吸收光谱显示吸收边其波长在400 nm左右,并通过禁带宽度计算可确定该样品禁带宽度在3.1 eV左右,说明该样品是金红石和锐钛矿的混合相。