Zn0.98Al0.02O/SrTiO3纳米复合材料的制备及热电性能研究

来源 :武汉科技大学 | 被引量 : 0次 | 上传用户:shy19780928
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
开发对环境无害的新能源是全世界能源部门面临的一项具有挑战性的任务。热电材料具有清洁、无污染的优点,是一种具有巨大潜力的新能源材料。A1掺杂Zn O(Zn1-xAlxO)热稳定性好,具有优异的电学性能和塞贝克系数,是一种极具潜力的高温热电材料。然而,较高的本征热导率严重制约了Zn1-xAlxO热电材料的应用和发展。本论文针对这一问题,制备Zn0.98Al0.02O/SrTiO3纳米复合材料,通过纳米界面调控Zn0.98Al0.02O热输运性能,并探究织构Zn0.98Al0.02O/SrTiO3纳米复合材料的热变形工艺,实现纳米界面、织构协同调控电热输运行为,揭示其织构结构演变规律以及纳米界面和织构对电热输运性能的调控机制。在空气气氛下采用固相烧结制备Zn0.98Al0.02O/SrTiO3复合材料,加入SrTiO3能够打破Zn0.98Al0.02O原有的固溶平衡,促进Zn0.98Al0.02O/SrTiO3复合材料致密化进程,致密度由73.8%增加至99.9%。Zn0.98Al0.02O/SrTiO3复合材料电导率显著增加,最高电导率达到1.3×10~4S/m。氩气气氛固相烧结的Zn0.98Al0.02O/SrTiO3复合材料的热导率低于空气气氛烧结的,这与其较低的致密度有关,SrTiO3含量2.0 wt.%的Zn0.98Al0.02O/SrTiO3复合材料取得0.051的较高ZT值,该值是空气气氛烧结的复合材料ZT值的1.66倍。其次,通过电场活化烧结制备Zn0.98Al0.02O/SrTiO3纳米复合材料,其结构致密,电导率显著增加。纳米SrTiO3晶粒未有明显长大,与Zn O形成的纳米界面使声子散射增强,热导率降低。SrTiO3含量为2.0 wt.%的Zn0.98Al0.02O/SrTiO3纳米复合材料取得0.057的ZT值,约为纯Zn0.98Al0.02O的ZT值1.58倍。最后,利用热变形技术制备织构可控的Zn0.98Al0.02O/SrTiO3纳米复合材料,1123K热变形温度下,SrTiO3含量为1.0 wt.%的Zn0.98Al0.02O/SrTiO3复合材料的取向因子为0.39,表现出较为明显的(002)晶面取向。随织构因子增大,电导率大幅度增加,最高达4.0×10~4S/m,较高的电导率导致Zn0.98Al0.02O/SrTiO3复合材料取得最大ZT值,其值约为0.077。
其他文献
煤焦油是煤基液体中重要的组成部分,针对煤焦油中高附加值组分的深加工与精细化学品的分离愈发受到人们的关注。其中,吲哚作为煤焦油洗油馏分中的精细化工组分,直接从洗油中萃取分离具有巨大的经济实用价值。然而,传统吲哚萃取方法存在能耗高,污染大,工艺复杂等问题限制了大规模工业化发展。因此,寻找绿色高效,经济便利的吲哚萃取提纯方法逐渐成为学者们研究的焦点。本文针对吲哚的深度提取与纯化,使用各种氢键受体和低共熔
学位
电力是一种以电能为动力的能源,对于国家、社会和人民的重要性不言而喻。而作为保障电力持续稳定供应的重要载体,输变电工程在国家基础设施建设中占有重要的地位,其工程质量不仅关乎国家经济的发展,也关系着千家万户的日常生活。如何提高输变电工程建设的质量、降低建设成本是输变电工程建设从业者们共同面临的挑战。相比于传统的人工管理模式,建筑信息建模(Building Information Modeling,BI
学位
氢能是一种清洁燃料,是国家“双碳”目标下重点发展的新能源。在主流的制氢技术中,电解水制氢以其高效、环保的特点广受关注。在电解水过程中使用析氢催化剂是降低电解水成本的关键。Mo2C因价格低廉、催化析氢活性高而广受关注。但是,Mo2C材料的电催化析氢(HER)性能往往受限于它的合成方法——因为在Mo2C的合成过程中往往需要较高的温度,制备出的Mo2C材料容易烧结,不能提供足够多的活性位点催化析氢过程;
学位
自Willems等在控制系统中提出耗散的概念以来,其在机器人系统、机电系统、电力系统等实际系统中发挥着重要作用.中立型非线性随机时滞系统,可以充分考虑系统状态和状态导数中的时滞、随机干扰和非线性因素等对系统的影响,它比一般控制系统可以更深刻、更准确的反映事物的变化规律,揭示事物的本质.因此,对中立型非线性随机时滞系统的耗散性分析问题的研究就显得尤为重要.本学位论文研究了两类中立型非线性随机时滞系统
学位
随着全球发展,能源危机和环境污染问题日益严峻,开发利用新型二次电池迫在眉睫。锂硫电池因理论比容量高和环境友好而受到广泛关注。然而,硫的低导电性和“穿梭效应”等问题限制了其实际应用。隔膜与正极改性已成为改善锂硫电池电化学性能的有效策略。本文设计制备了一系列应用于锂硫电池的功能性改性隔膜和复合硫载体,探究其对锂硫电池电化学性能的影响。具体内容如下:(1)通过水热法制备多孔NiCo2O4@石墨烯气凝胶(
学位
430铁素体不锈钢是使用最广泛的钢种之一,为提高其产品性能,控制非金属夹杂物的成分和降低钢中非金属夹杂物的数量是生产高质量洁净钢的前提。钢液脱氧产生了大量夹杂物,其成分取决于夹杂物、精炼渣、耐火材料、钢液之间的化学反应。同时,由于精炼渣的吸附作用,夹杂物上浮至钢-渣界面而去除。通过合适的精炼工艺能控制钢液中非金属夹杂物的成分和数量。本研究通过热力学软件Fact Sage和高温平衡实验,构建了187
学位
低短路比电网条件下,直驱风电系统逆变器侧锁相环失步和电网强度的变化易引起次同步振荡,严重影响系统的安全稳定运行。锁相环、电流环PI参数选取不当会导致直驱风电系统内部产生串联谐振,进而引发系统次同步振荡。本文通过对直驱风电系统中并网变流器锁相环和电流环进行优化设计,以提高弱电网下系统稳定性,抑制次同步振荡的发生,主要的研究内容如下:弱电网下,由于锁相环PI参数设计不合理而导致带宽过大,会对电流控制产
学位
背景:虽然高效抗逆转录病毒治疗(HAART)在控制HIV-1感染方面卓有成效,但存在服药依从性差、耐药等诸多问题。近年来,HIV-1的抗体治疗成为热点,抗HIV-1广谱中和抗体(b NAbs)通过与HIV-1包膜糖蛋白gp120特异性结合可以中和HIV-1、预防HIV-1感染,在艾滋病功能性治愈乃至根治上极有可能发挥重要作用,带来颠覆性的突破。而我国HIV-1感染情况复杂多变,目前,尚无针对国内H
学位
螺栓是一种应用广泛且重要的紧固件,凭借其优秀的结构连接性能在工业应用领域发挥着举足轻重的作用。为了保证被连接件之间安全可靠的连接,需要对螺栓预紧及服役过程中的受力状态进行实时在线监测,尤其是在一些大型设备及设施上所用螺栓。为此,基于螺栓结构和工作原理开发出各种传感器对螺栓受力状态进行精确的测量与监测具有重要的意义。目前,电磁类传感器在螺栓受力状态的实时在线测量与监测上存在一些问题,如易受电磁干扰、
学位
管道运输是油气运输的主要方式,在长期服役过程中,由管道积水引发的管道腐蚀、穿孔、泄漏等现象屡见不鲜。管道积水量的检测对管道的正常运行具有重大意义。本文针对管道积水问题,结合当前理论背景,对管道积水量的检测进行了系统的研究。论文所做的主要工作如下:(1)分析敲击检测法的基本原理与声波衰减理论,提出了一种基于敲击声信号—卷积神经网络(Convolutional Neural Network,CNN)的
学位