论文部分内容阅读
隧穿氧化层钝化接触(TOPCon)是一种用于晶硅太阳能电池的钝化结构,其由一层超薄的氧化硅和一层重掺杂的多晶硅组成,主要用于电池背表面的钝化,可以实现优异的表面钝化和载流子的选择性收集,用其制备的晶硅太阳能电池的转换效率已经超过了25.7%。但这与理论极限效率相比,还有很大的提升空间。晶硅内部的杂质和缺陷以及电池前表面的金属-半导体接触复合损失已经是制约电池效率继续提升的主要因素。TOPCon因为其独特的结构,存在着吸除杂质的可能性,以及在其多晶硅层掺入一些元素可以改变其光学性能,因此,该结构可以用于电池的前表面并成为当前TOPCon结构的研究热点。针对这些方面,本文对TOPCon结构的吸杂效应和掺入C元素后的钝化及电学性能进行了研究。对于TOPCon结构的吸杂效应,首先采用溶液浸泡法在硅片中引入Fe杂质,采用硝酸氧化法制备超薄氧化硅,利用等离子体增强化学气相沉积(Plasma-enhanced chemical vapor deposition,PECVD)在氧化硅层上沉积掺杂层,围绕着TOPCon结构的制备过程设置退火温度、保温时间、氧化硅厚度、多晶硅层厚度、多晶硅层掺杂浓度和硅片初始Fe浓度为变量,利用少子寿命仪测试并计算出Fe含量,表征各个参数对吸杂效应的影响;对于TOPCon结构的钝化性能,向TOPCon的P掺杂多晶硅层掺入了不同含量的C,改变了晶化温度和退火升温方式,采用少子寿命仪测试其钝化性能,利用四探针方阻测试仪测试钝化层的方阻,利用拉曼光谱仪分析钝化层的晶化率,利用电化学电容电压(Electrochemical capacitance-voltage profiler,ECV)法测试P的激活与扩散分布,利用半导体参数仪分析了掺C后接触电阻率的变化,综合讨论分析了C的掺入对钝化结构的钝化和电学性能的影响。主要结论如下:(1)退火温度和保温时间均促进了TOPCon结构的吸杂效应。退火温度从720℃升高到920℃时,残留Fe含量从2.2×1011 cm-3降低到8.4×109 cm-3;保温时间从10 min增加至180 min时,残留Fe含量从1×1011 cm-3降低到1.5×109 cm-3;氧化硅层和多晶硅层作用效果相反,氧化硅层抑制吸杂过程的进行,多晶硅层则是主要的吸杂区域,其厚度增加,吸杂效应增强;多晶硅层P浓度的增加增强了吸杂效果,主要原因是P浓度的增加提升了多晶硅层容纳Fe原子的能力,同时P的内扩散对氧化硅造成了一定程度的破坏,这些都会增强吸杂效果。(2)硅片初始Fe含量的不同也会对TOPCon吸杂效果造成差异,初始Fe含量越低,吸杂之后,硅片的钝化水平恢复得越好,少子寿命和iVoc也都会大幅度提升;Al2O3的氢化处理对吸杂效应和钝化性能的提升都有一定的促进作用。数据表明,TOPCon结构可以显著提升硅片的体寿命,同时实现优异的表面钝化。实际工业生产中硅片的杂质浓度是远低于1×10111 cm-3的,因此利用TOPCon结构优异的表面钝化和吸杂效应,使得较低质量的硅片也有机会制备较高性能的太阳能电池,这对电池的工业化应用意义重大。(3)钝化层掺入C以后,TOPCon结构可以承受更高的晶化退火温度,在880℃~940℃的温度区间内,掺C样品的iVoc均能稳定在735 mV左右;当CH4/SiH4大于1.5时,从600℃开始升温退火的样品也能达到从室温开始升温的钝化水平,iVoc均超过了735 mV,且此时P的扩散分布不受升温方式的影响;C的掺入以及升温方式对钝化层的晶化率没有影响,无论是否掺C,多晶硅层的晶化率均达到约70%。(4)C的掺入增加了钝化层的方阻,不利于载流子传输;升高退火温度可以激活更多的P原子,降低钝化层的方阻。C的掺入也提高了钝化层的接触电阻率,两者成正比例关系。