【摘 要】
:
工农业含氮废水的大量排放导致水体中硝酸盐污染现象频发,严重威胁人体健康。以氢气为还原剂的催化还原法由于反应高效,无二次污染,被广泛关注。探索优化催化剂制备条件和反应工艺条件以取得更高的催化活性和氮气选择性是研究的关键。类水滑石作为优良的催化剂载体,可通过独特的记忆效应减少反应过程中传质的限制,提高反应效率,但还存在亚硝酸根累积、氮气选择性较低等问题。针对这些问题,本文结合反应机理从类水滑石催化剂制
论文部分内容阅读
工农业含氮废水的大量排放导致水体中硝酸盐污染现象频发,严重威胁人体健康。以氢气为还原剂的催化还原法由于反应高效,无二次污染,被广泛关注。探索优化催化剂制备条件和反应工艺条件以取得更高的催化活性和氮气选择性是研究的关键。类水滑石作为优良的催化剂载体,可通过独特的记忆效应减少反应过程中传质的限制,提高反应效率,但还存在亚硝酸根累积、氮气选择性较低等问题。针对这些问题,本文结合反应机理从类水滑石催化剂制备方法和反应工艺条件两方面对催化性能进行了研究,具体研究内容如下:
(1)采用共沉淀的方法制备了水滑石载体中含不同金属种类的催化剂,并对其进行XRD、SEM与BET等表征,结果表明Pd/CuMgAl类水滑石催化剂具有相对较高的比表面积和规整的形貌,催化效果最好,Cu含量过高时由于Jahn-Teller效应导致层板变形,这使得反应活性迅速降低。
(2)采用不同的煅烧方式和还原过程制备Pd/CuMgAl类水滑石催化剂,并对其进行XRD、FT-IR、H2-TPR等表征,探究影响反应转化率和选择性的关键因素。结果表明催化剂在还原(400℃,1h)前无煅烧过程时催化效果最好,煅烧会降低Cu的还原壁垒,使还原后Cu+的量减少,不利于亚硝酸根的进一步还原。
(3)考察了反应工艺条件的影响,结果表明可通过降低溶液中初始硝酸根浓度、提高催化剂用量、增加氢气流量、使用有机酸做中和剂的方法来减少亚硝酸根的累积,但同时也会导致铵根选择性增加。
(4)采用水热法和尿素水解法成功制备了类水滑石载体,并通过XRD与SEM进行表征以探究水热温度和沉淀剂加入量对催化效果的影响。结果发现水热温度和尿素加入量增加时,片状晶体水平逐层堆叠的形态数量与晶体尺寸增加,记忆效应的吸附效果更加显著。最优条件下,NO3-转化率可达93%以上,N2选择性为88.6%。
其他文献
刺激响应性水凝胶材料是具有广阔前途的特殊材料,与其他材料相比,水凝胶材料具有高稳定性,高韧性,反应迅速且准确和复原速度快等优势。作为智能响应材料中的一种,刺激响应性水凝胶可以在受到力学,温度和p H等一系列多种不同的外部刺激时可逆地改变凝胶内部结构、自身颜色或凝胶形状等物理化学性质,可用于智能传感器、驱动器、防伪材料等各种领域。本论文主要以十二烷基硫酸钠(SDS)与氯化钠(NaCl)在去离子水溶解
质谱技术具有数据量丰富、选择性高和灵敏度高等优点,可以根据检测要求选择不同的色谱分离类型。特别地,高分辨质谱具有高质量精确度、高分辨率等优点,能够对痕量组分进行筛选与确证,对复杂体系过程中成分分析具有很大的优势。针对质谱产生的海量数据提取与分析,化学计量学提供了强大的手段,解决了数据多维化、复杂化等难题。质谱技术结合化学计量学建立相关统计模型能够发掘出相关体系过程中的关键标志物,实现快速、精准的识
为提高电化学储能器件的循环寿命、功率密度、能量密度和安全性,纳米功能材料被研究应用,廉价易得的生物质材料广受关注。作为一种天然生物质材料,纳米纤维素因独特结构与优异的理化性质而极具潜力。但是,较差的本征导电性,要求通过功能化设计来提升电化学性能。为此,以纳米纤维素为模板前驱体,结合化学氧化原位聚合、水热和碳化等方法,设计并制备了镍钴层状双氢氧化物@介孔碳(NiCo-LDH@MC)和硫化镍/硫化钴@
在最近的几十年中,席夫碱及其配合物作为化学药物和新型材料的潜在性能已引起各个领域的广泛关注。席夫碱的多功能特性主要归功于用于缩合反应的醛/酮和胺,分子基团主要包括芳香环和杂环,尤其对于杂环来说,应用更加广泛,可以为金属配位提供众多的配位位点;而金属配位的成功,进而改善或提高配体的性能,有助于配合物在各方面的应用。噻唑环是一种五元杂环化合物,噻唑环的骨架存在于多种生物活性杂环和天然产物中,被认为是多
本论文以α-[3-(2,3-环氧丙氧基)丙基]-ω-丁基聚二甲基硅氧烷(PDMS-E)为原料,通过膜乳化法制备了不同粒径的单分散PDMS-E乳胶粒。研究了乳胶粒粒径及时间对PDMS-E乳胶粒与胶原多肽吸附-反应行为的影响。研究结果表明,乳胶粒粒径和反应时间可调控胶原多肽在PDMS-E乳胶粒表面的吸附行为,进而调控二者的界面反应及产物形态。本研究将对控制不相容聚合物间界面反应和聚合物形态提供实验数据
本文主要是通过简单的自模板溶剂热法结合退火工艺制备了蛋黄壳状和实心球状的NiFe_2O_4纳米球,将不同形貌的NiFe_2O_4纳米球与碳(C)材料或还原氧化石墨烯(rGO)材料复合后得到蛋黄壳状的NiFe_2O_4@C和NiFe_2O_4/rGO纳米复合材料,并将其应用于锂离子电池(LIBs)中。(1)通过简单的自模板溶剂热法得到镍铁前驱体,在退火过程中控制升温速率得到不同形貌的NiFe_2O_
环境、能源问题不容忽视,急需找到一种绿色环保技术来解决上述问题。能耗低、无污染的光催化技术受到科研工作者的青睐。本研究主要是在Bi基半导体光催化剂的基础上,选取合适的改性策略以制备出性能优越的光催化材料。基于此,分别制备了Bi_2WO_6/Bi_2S_3/MoS_2 n-p异质结和CuO/TiO_2/Bi_2S_3复合材料,而后探究、剖析了材料的理化性质。主要探究内容如下:(1)使用聚乙烯吡咯烷酮
选择性催化氧化是工业生产中广泛应用的一种制备含氧化合物的重要方法,传统的催化剂大多数是可溶性金属盐类,氧化剂主要为高价态的氧化物,如重铬酸盐、高锰酸钾等。由于这些催化剂和氧化剂在生产过程中诞生大量有毒废液和废料,给环境带来污染。钛硅分子筛催化剂TS-1的诞生,钛活性中心可以活化双氧水,实现选择性氧化,克服了传统氧化工艺中污染严重的缺点,开启了绿色氧化生产工业的新纪元。虽然TS-1催化剂具有优异的催
氢甲酰化反应是指烯烃与合成气反应生成多一个碳原子醛/醇的催化过程,具有100%原子经济性。其产物广泛应用于生产高附加值产品,如表面活性剂、医药中间体等。目前,低碳烯烃的氢甲酰化反应已经成熟,但高碳烯烃的氢甲酰化反应仍存在催化剂活性低、稳定性差等问题。基于均相催化高活性和多相催化易分离的特点,本论文将含膦配体限域于ZIF-8材料中,开发一种高效稳定的限域催化剂用于1-辛烯的氢甲酰化反应,具体研究内容
纳米Au催化剂被发现对诸多气固相反应都具有很高的催化活性,选择性较高,且反应条件易控、反应过程绿色环保,受到国内外科学家们的广泛关注。然而,纳米Au催化剂的反应稳定性较差,在催化剂的制备或反应中容易发生Au粒子团聚而致催化剂失活,极大限制了其在工业催化中的应用。为此,本论文主要采用溶胶法,引入相对更稳定的Pd粒子,与Au形成合金以限域稳定纳米Au粒子,探索制备并优化了Au-Pd双金属溶胶的制备条件