基于Anderson型杂多酸催化剂的制备及其光催化性能研究

来源 :烟台大学 | 被引量 : 0次 | 上传用户:tsmkgszcd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,人们对环境问题关注度逐渐增加,尤其是液体燃料中含硫化合物(包括噻吩及其衍生物)燃烧后会转化为硫化物(二氧化硫等)有毒物质,排放后可引发酸雨、改变土壤和河流p H值、对建筑物等造成破坏,并对人类和自然生物产生不利影响。考虑到含硫化合物排放产生负面影响,世界范围内开始制定相应法律法规严格控制硫含量在较低水平(10 ppm),因此对液体燃料油深度脱硫势在必行。加氢脱硫无论在技术上还是商业上都是应用广泛的脱硫技术,但是由于空间位阻和电子效应等问题,使其对二甲基二苯并噻吩类化合物脱除较为困难。氧化脱硫技术因其反应条件温和且对噻吩类硫化物脱除效果较好,被作为加氢脱硫补充技术。光催化氧化脱硫不仅具有普通氧化脱硫优点,而且无二次污染和选择性较高,能够将有害含硫化合物氧化为容易被脱除的砜类物质。半导体材料Ti O2因其化学稳定性高、无毒性和价格低廉而倍受关注。本研究以溶胶凝胶法制备复合型光催化剂应用于光催化氧化脱硫。在最佳反应条件下,2小时脱硫率可达到99%。通过循环回收测试验证该催化体系循环性和稳定性较好。利用自由基清除实验,探究光催化氧化脱硫基本过程以及相应机理。利用杂多酸作为金属氧化物前驱体效果虽好,但Anderson型杂多酸本身具有光敏性以及氧化还原性所以可作为高活性催化剂,这些特点对催化反应更有利。本工作重点在于低共熔溶剂作为绿色溶剂可以引导二氧化钛的合成,采用低共熔溶剂辅助合成方法制备出具有特殊形态的二氧化钛,在光催化氧化脱硫技术中具有良好的性能。由于其制备过程温和,保持Anderson型POMs完整性。最后该体系对于含芳烃类的柴油也有较好脱硫效果,为将来应用于真实油品提供可行性。C3N4和Ti O2作为半导体材料在光催化领域都引起广泛关注,C3N4由于合适的带隙使其在可见光下具有优异的催化活性。这部分工作以氮化碳为光催化剂,掺杂(NH4)4H6Zn Mo6O24应用于光催化氧化脱硫体系中,以20 mg的催化剂在3h就可以达到100%的脱硫率。FT-IR、XRD和UV-vis等表征证明催化剂的成功合成,且通过紫外光谱发现负载Anderson型POMs后在390-780nm的吸光范围变宽。该体系优异的脱硫性能为构建Z-scheme型催化打下良好的基础。利用C3N4的强还原性以及Anderson型多金属氧酸盐的催化活性,使用氧化石墨烯连接POMs/Ti O2与C3N4构成Z-scheme型催化体系。该体系为多元光催化氧化脱硫体系提供耦合模型和理论基础,为更充分利用太阳能以及高效脱硫提供新途径。
其他文献
锂离子电池(LIBs)由于高比能量、高效率和高稳定性等优势在大规模储能、电动汽车和数码产品中得到广泛应用。应用领域的快速发展也对LIBs的电化学性能提出了更高的要求,特别是对能量密度和温度适应性等。电池性能主要取决于正负极材料的性能。相比于正极材料,商业化负极材料选择更少、性能更差。因此,设计合成新型的高性能负极材料是提升锂离子电池性能的关键。本论文设计并合成了一系列聚阴离子型钼酸盐和钨酸盐负极材
学位
P53是重要的肿瘤抑制因子,在人体中主要受MDM2基因调控,并形成复杂的抑癌基因网络。在超过50%以上的癌症患者中均出现了p53基因突变以及其网络功能的丧失,这促使p53基因网络研究成为如今肿瘤研究的热点之一。其中针对p53信号通路通过药物联合以协同作用的方式治疗肿瘤受到广泛关注,该方式具有降低药物毒性、降低耐药性、增强治疗效果的作用。Nutlin-3是一种重要的抑癌小分子,它在联合用药治疗肿瘤临
学位
肺癌是威胁人类健康的重大疾病之一。钙激活的氯离子通道(Ca CCs)广泛分布在多种组织中,参与众多生理过程。现已确定TMEM16A为Ca CCs的分子基础。TMEM16A功能异常与包括癌症在内多种疾病密切相关。重要的是,TMEM16A表达和功能的下调显著抑制多种癌细胞的增殖,迁移,侵袭和凋亡,因此TMEM16A可作为肺癌的药物靶标。离子通道的药理阻断是一种具有显著潜力的抗肿瘤治疗方法。越来越多的证
学位
液晶分子的取向排列一直以来都是液晶物理学研究的热点之一。胆甾相是液晶分子形成的一种单轴螺旋结构的液晶相。胆甾相液晶的螺旋结构导致了折射率的周期性调制,使得胆甾相液晶被广泛应用于多个领域。胆甾相液晶在双稳态上的研究已经取得了杰出的进展,对于如何形成稳定良好的胆甾相液晶ULH(uniform lying helix)结构以便缩短液晶的响应时间,有待进一步研究。电场作用、挠曲电效应、弹性各向异性、锚定作
学位
高选择性U(Ⅵ)富集新材料的开发对于U(Ⅵ)的污染治理和海水提铀的发展具有重要意义。为了探索不同官能团在U(Ⅵ)吸附中的作用,采用改良Hummers法制备氧化石墨烯(GO),在此基础上通过等离子接枝技术制备含氧(呋喃)、含氮(吡咯和苯胺)和含硫(噻吩)官能团化氧化石墨烯,即呋喃/GO(FGO)、吡咯/GO(PGO)、苯胺/GO(AGO)和噻吩/GO(TGO)复合吸附材料。比较未加工的GO和官能团化
学位
近年来,以光热材料为核心的光热疗法作为一种无侵入性、特异性强的替代疗法,在癌症治疗等领域表现出了巨大的优势。目前,光热材料的研究主要集中在促光谱红移、增加量子产率和光吸收系数、提高材料水溶性、生物功能性修饰等方面。与无机光热材料和小分子光敏剂相比,有机共轭分子具有高生物相容性、高消光系数和热转换量子效率等优势,在光热治疗领域具有巨大的应用潜力。此外,有机共轭分子的水溶性、生物相容性等性质有望通过纳
学位
弯头和弯管在物料高速冲刷和腐蚀作用下会产生缺陷,缺陷的存在会影响弯头的承载能力,降低其运行的安全性和可靠性。准确预测含缺陷弯头和弯管的爆破压力,可以在发挥其承载能力的同时保证其安全性。本文以局部减薄缺陷弯头为研究对象,采用显式非线性有限元模拟和支持向量机计算方法,对其进行了爆破压力预测研究,主要研究内容包括以下几个方面:首先,利用液压设备完成了无缺陷弯头水压爆破实验,得到无缺陷弯头的爆破压力与失效
学位
聚合物纳米材料因结构可控、功能多样、来源丰富等优点,在药物载体、组织工程、基因工程等领域具有广阔的应用前景。然而,目前传统制备方法存在产率低、重复性差、操作繁琐等问题,限制了聚合物纳米材料的批量生产及进一步广泛应用。如何实现聚合物纳米材料的高效制备成为推动其在各领域进一步应用的关键。聚合诱导自组装(Polymerization-Induced Self-Assembly,PISA),因其制备纳米材
学位
作为目前研究最多、发展最成熟的电化学传感器,离子选择性电极具有造价便宜、分析速度快、线性范围广以及不受色度和浊度影响等优点,因而在临床诊断、环境分析及工业检测等众多领域应用广泛。到目前为止,此类传感器已经成功实现60多种分析物的检测,例如p H值、电解质离子、重金属、营养物质和碳酸盐等的浓度。虽然该类传感器的绝大多数应用对象为水溶液样品,但是在非水介质中的使用往往也是不可避免的,但是到目前为止,尚
学位
近年来,随着纳米技术的不断发展,纳米材料在电化学、化学发光以及荧光等领域得到了广泛的应用。在诸多纳米材料中,稀土纳米材料由因其价格低廉,低毒性和良好的生物相容性等特点被人们广泛关注。此外,由于该类材料拥有独特磁学、电学和光学性能,使其在电致化学发光(ECL)分析检测领域拥有广阔的应用前景。本论文基于稀土元素的发光特性成功合成了硫化铕纳米晶(EuS NCs)、氢氧化钆纳米晶(Gd(OH)3)和掺铕氧
学位