单矩阵自仿射集的保测参数化

来源 :华中师范大学 | 被引量 : 0次 | 上传用户:silversandcgliu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究单矩阵自仿射集的保测参数化.所谓保测参数化,就是保持[0,1]区间上的Lebesgue测度和自仿射集上给定的自仿测度.首先,我们讨论了图递归迭代函数系(GIFS)的不变集{Ej}j=1m上的图递归测度(μ1,..,μm).我们证明了,给定一个满足强开集条件的线性GIFS,给定一个图递归测度,则Ej有一个保持测度μj的参数化.我们也称(Ej,μj)可以保测参数化.(我们的结果推广 了文献[H.Rao,S.Q.Zhang,Space-filling curves of self-similar sets(Ⅰ):iterated function systems with order structures,Nonlinearity,29(2016)]中的结果,上文中对于Hausdorff测度证明了这个结论.)其次,我们用文献[X.R.Dai,H.Rao,and S.Q.Zhang,Space-filling curves of self-similar sets(Ⅱ):edge-to-trail substitution rule,Nonlinearity,32(2019)]中的方法,对于一个单矩阵自仿射集F,构造了骨架集,边-路径代换和线性GIFS,把自仿射集转化成了图递归集,并且我们证明了自仿测度μ可以转化成图递归测度.由此我们证明了,单矩阵自仿射集有骨架集且满足开集条件时,(F,μ)可以保测参数化.最后,我们给出了连通McMullen集的保测参数化的例子.
其他文献
近年来,我国研究生招生规模持续增长.去年,教育部发文强调提升硕士研究生教育质量,而学位论文的质量是衡量研究生培养质量的重要标准.因此,硕士学位论文质量的评价体系十分重要.然而目前适用于数学教育硕士学位论文的质量评价体系较少,另一方面,目前数学教育硕士学位论文研究方法的应用存在诸多问题,而研究方法的科学性又是论文质量评价的重要指标.加之各高校论文质量评价大都采用定性评价,缺少定量的评价工具.因此,本
学位
本文主要考虑了如下具有径向初值的高阶非线性薛定谔方程的柯西问题:(?)其中当α>d/2时,0<σ<+∞;当 1<α<d/2时,0<σ≤2α/d-2α.本文的主要结果是建立了上述问题的径向解在L2-超临界情形(0<sc≤ α)和L2-临界情形(sc=0)下的爆破准则,其中sc=d/2-α/σ.具体阐述如下:(1)(L2-超临界情形)假设d≥2,0<sc≤α,σ<2α.若u是上述方程的径向解,且满足E
学位
Schur-环是群环的一类子环,它是由群的某个划分决定的.过去的文章大都在研究有限群上的Schur-环的情况.Leung和Man将有限循环群上的Schur-环进行了分类:划分是由群的直积分解诱导的(张量积型Schur-环);划分是由自同构子群的轨道诱导的(轨道Schur-环);划分是由正规子群的陪集诱导的(圈积型Schur-环);平凡Schur-环.我们将这四种Schur-环统称为传统Schur-
学位
本文主要讨论了一个抛物型方程中辐射系数的识别问题,通过对子区域中数据的观察,反演这个系数。由于这个反问题是不适定的,为了消除其不适定性,我们采用Tikhonov正则化方法将其转化成一个连续优化问题,证明了该优化问题的极小子的存在性和稳定性。然后,我们通过有限元方法将其变成了离散的优化问题,并证明了解的存在性和收敛性。最后,我们应用非线性共轭梯度法求解了该离散的优化问题,同时给出了相应的数值算例,以
学位
图所蕴含的内部结构是图论主要的研究内容.代数图论与组合图论的一个重要研究领域即是图的各种指标理论,它主要借助于图的相关矩阵所描述的指标参数来刻画图自身的结构性质,并研究图的指标参数与其结构之间的内在联系.本文主要通过一类图矩阵的特征值(ABC矩阵特征值)理论来研究基于给定点数,边数,最大度以及最小度的图的ABC Estrada指标的上界和下界,以及该指标和ABC能量的关系和相对应极图的刻画.具体内
学位
图论主要研究图所蕴藏的内部结构.Wiener指标,闭途径条数以及图的多项式系数是研究图结构的重要参数.树是连通的无圈图.本文主要采用统一的方法,借助儿类图变换并利用递推关系来研究树的Wiener指标,闭途径条数.多项式(邻接多项式.拉普拉斯多项式,边覆盖多项式,独立多项式)系数的极值问题.主要结果包括:·第一章主要介绍了论文的研究背景.通过对研究背景的系统分析,充分展现了我们研究工作的必要性和创新
学位
令p是素数,O是特征为零的完备离散赋值环,K与k分别是O的分式域和剩余域.假设K对本文所考虑的群足够大,k是特征为p的代数闭域.对于有限群G的块b,我们用R(G,b)记b中的所有广义特征标组成的集合.设块b的亏群D是交换2-群,超聚焦子群是Klein四元群.令G是包含G的有限群,且G在G中正规.假设G的阶为n,Qn是K的n次分圆子域.H是Gal(Qn/Q)中这样的元素σ构成的子群:存在非负整数m,
学位
基于电阻距离的图参数与图结构的研究起源于电网络的相关理论,并最终发展成现代图论的一个重要方向.简单连通图G=(VG,EG)的离心电阻距离和ξR(G)是指∑{u,v}(?)VG(εG(u)+εG(v))Ruv,其中εG(w)是顶点w的离心率,Ruv是图G中顶点u与顶点v之间的电阻距离.本文的主要内容是在两类图中研究离心电阻距离和能达到极值的图.具体内容包括:·在第一章中,我们介绍了论文的研究背景、研
学位
设K是由IFS{fi}i=1N生成的连通自相似集,而φ:[0,1]→K是连续满射,我们称之为K的一个空间填充曲线.对点z∈K,φ经过z的次数#φ-1({z}),称为z的访问次数或重数,记为m(z).对于一般的满足链条件和开集条件的连通自相似集K,若γ:[0,1]→K为保测的空间填充曲线,我们证明了存在M>1,对任意的z ∈ K,使得1 ≤ m(z)≤M,且K上几乎处处的点是1重点,并且K的编码多重
学位
在文章中,我们主要研究的是具有守恒非线性的Hsieh方程的初边值问题.整体解的存在唯一性在Sobolev空间中被证明.我们的一个主要研究目的是得到当扩散系数β趋于0的时候,边界层的变化以及收敛率.结果表明:边界层的厚度为O(βγ),其中0<γ<1/2.需要特别指出的是:不同于以往关于Hsieh方程的非守恒形式的结果,守恒非线性项(ψβθβ)x的存在意味着有新的非线性项ψxβθβ需要处理.而为了得到
学位